Как работает двигатель битурбо

Как работает система турбонаддува TwinTurbo

Как работает двигатель битурбо

Основной проблемой использования турбонаддува является инерционность системы или возникновение так называемой «турбоямы» (временная задержка между увеличением оборотов двигателя и фактическим увеличением мощности). Для ее устранения была разработана схема с использованием двух турбокомпрессоров, получившая наименование TwinTurbo. У некоторых производителей эта технология также известна как BiTurbo, но отличия конструкций заключается только в коммерческом названии.

Особенности работы Твин Турбо

Система наддува TwinTurbo

Системы с двумя компрессорами применяются и на дизельных, и на бензиновых двигателях. Однако для последних требуется использование более качественного топлива с высоким октановым числом, что позволяет снизить вероятность детонации (негативное явление возникающее в цилиндрах двигателя, разрушающее цилиндро-поршневую группу).

Помимо основной функции уменьшения времени турбозадержки, схема Твин Турбо позволяет получить более высокую мощность двигателя автомобиля, снижает расход топлива и сохраняет максимальный крутящий момент в широком диапазоне оборотов. Это достигается использованием различных схем подключения компрессоров.

Виды схем наддува с двумя турбокомпрессорами

В зависимости от способа подключения пары турбокомпрессоров различают три основных схемы системы TwinTurbo:

  • параллельная;
  • последовательная;
  • ступенчатая.

Параллельная схема подключения турбин

Предусматривает подключение двух одинаковых турбокомпрессоров, работающих параллельно (одновременно). Сущность применения конструкции заключается в том, что две меньших по объему турбины имеют меньшую инерционность, чем одна большая.

Перед подачей в цилиндры воздух, нагнетаемый обоими турбокомпрессорами, поступает в один впускной коллектор, где смешивается с топливом и распределяется в камеры сгорания. Эта схема чаще используется на дизельных двигателях.

Последовательное включение

Последовательная схема подключения Твин Турбо

Последовательно-параллельная схема предполагает установку двух одинаковых турбин. Одна работает постоянно, а вторая подключается при повышении оборотов двигателя, увеличении нагрузки или других особых режимах. Переключение режимов работы осуществляется с помощью клапана, приводимого в действие ЭБУ двигателя автомобиля.

Эта система прежде всего ориентирована на устранение турбоямы и получение более плавной динамики разгона автомобиля. По аналогичной схеме работают системы с тройным турбонаддувом TripleTurbo.

Ступенчатая схема

Ступенчатая схема Битурбо

Двухступенчатый турбонаддув представляет собой два турбокомпрессора разного размера, которые установлены последовательно и подключены к впускному и выпускному каналам. Последние оснащены перепускными клапанами, регулирующими потоки воздуха и отработавших газов. Ступенчатая схема имеет три режима работы:

  • При малых оборотах двигателя клапаны находятся в закрытом положении. Отработавшие газы проходят через обе турбины. Поскольку давление газов низкое, крыльчатки большой турбины практически не вращаются. Воздух проходит через обе ступени компрессоров, получая минимальное избыточное давление.
  • При увеличении оборотов двигателя клапан отработавших газов начинает открываться, что приводит в движение большую турбину. Больший компрессор сжимает воздух, после чего он направляется на малое колесо, где производится дополнительное сжатие.
  • Когда двигатель работает на максимуме оборотов, оба клапана полностью открыты, что направляет поток отработавших газов напрямую на большую турбину, воздух проходит через больший компрессор и сразу отправляется к цилиндрам двигателя.

Ступенчатая схема наиболее часто применяется для автомобилей с дизельными двигателями.

Преимущества и недостатки двойного турбонаддува

В настоящее время TwinTurbo в основном устанавливается на мощных автомобилях. Применение этой системы позволяет добиться такого преимущества как обеспечение максимального крутящего момента в широком диапазоне оборотов двигателя. Также благодаря двойному турбонаддуву достигается увеличение мощности при относительно небольших габаритах двигателя, что делает его более экономичным по сравнению с атмосферным двигателем.

К основным недостаткам БиТурбо можно отнести высокую стоимость, что обусловлено сложностью конструкции. Так же, как и с классической турбиной, системы с двумя турбокомпрессорами нуждаются в более бережном отношении, качественном топливе и своевременной замене масла.

(3 3,67 из 5)
турбонаддува является инерционность системы или возникновение так называемой «турбоямы» (временная задержка между увеличением оборотов двигателя и фактическим увеличен»/>

Вам также может понравиться

Источник: https://TechAutoPort.ru/dvigatel/vpusknaya-sistema/twinturbo.html

Как работает турбонаддув

Как работает двигатель битурбо

Турбокомпрессор или попросту турбина – это дополнительное устройство двигателя, которое для своей работы использует энергию отработавших газов. Что позволяет увеличить мощность двигателя на величину от 25% до 100%. Прежде чем понять, как работает турбокомпрессор, стоит рассмотреть функционирование двигателя внутреннего сгорания.

Принцип работы ДВС

Любой двигатель внутреннего сгорания, дизельный или бензиновый, работает на принципе получения энергии, образующейся от воспламенения топливовоздушной смеси в камерах сгорания.

Через впускные клапаны в цилиндр подается отфильтрованный внешний воздух и впрыскивается топливо, причем при пассивной подаче воздуха, в цилиндр подается дозированное количество топлива.

Именно эта смесь сгорает в цилиндре и заставляет двигаться поршень, который передает свою кинетическую энергию на ходовую систему автомобиля. Чем больше такой смеси подается и сгорает в цилиндрах, тем больше выходной крутящий момент и соответственно выше общая мощность мотора.

Принцип работы турбины

Для увеличения подачи воздуха в цилиндр, без изменения объема самого цилиндра, используют турбокомпрессор. При работе турбины используются продукты сгорания топливной смеси, которые приводят в действие роторный механизм турбокомпрессора, с помощью которого атмосферный воздух принудительно нагнетается в цилиндры (турбонаддув). И, благодаря этому, в цилиндр подается и большая дозировка топлива.

Во время нагнетания, воздух может нагреваться, из-за чего уменьшается его плотность и масса в цилиндрах. Для подачи большего количества воздуха, его необходимо охладить. Для лучшего охлаждения используется радиаторное устройство, называемое интеркулером, который устанавливается на выходе из холодной части турбокомпрессора и через который проходит воздух перед попаданием в цилиндры.

На следующем этапе поршень всасывает этот охлажденный воздух через впускные клапаны и одновременно в камеру сгорания подается топливо, образуется топливовоздушная смесь. Возгорание топливной смеси происходит от искры (бензиновые двигатели), либо от сжатия (дизельные двигатели). После того, как произошло сгорание порции смеси, продукты горения выбрасываются через выпускной клапан и попадают снова в турбину, на ее ротор.

Таким образом, она работает без участия движущих частей двигателя, используя энергию потока выхлопных газов.

Для каждого двигателя турбокомпрессор подбирается индивидуально, исходя из его собственной мощности и объема. Причем величина наддува зависит от геометрических параметров (размеров) улиток, компрессорного колеса, ротора турбины.

Некоторые конструкции двигателей оборудуют не одной турбиной, а двумя: одинакового размера – би-турбо, разного размера – твин-турбо. В последнее время широкое распространение получили турбокомпрессоры с механизмом изменяемой геометрии.

Стоит отметить, что сложность, а соответственно и стоимость ремонта турбины зависит от ее конструктивных особенностей и модификации.

Механизм изменяемой геометрии

Такой механизм позволяет дозировать подачу отработавших газов на колесо в турбине (ротор). Тем самым, позволяет оптимизировать работу турбокомпрессора на различных оборотах.

Это достигается за счет движения специальных лопаток, смонтированных на кольце геометрии. Они синхронно передвигаются, получая движение от вакуумного актуатора или электронного сервопривода в определенный момент, и контролируют наддув.

Как правило, устанавливаются они на дизельных ДВС, потому как температура выхлопных газов у бензиновых моторов выше, чем у дизеля, соответственно лопатки геометрии могут деформироваться.

Такие турбины позволяют оптимизировать процесс турбонаддува, что приводит к уменьшению расхода топлива и вредных выбросов при одновременном повышении мощности и крутящего момента.

Многие автомобилисты ошибочно полагают, что турбокомпрессор начинает включаться в работу с оборотов мотора от 1500-2000 об/мин. На самом деле, он запускается сразу после заводки автомобиля и работает на холостом ходу. А оптимальных оборотов достигает в диапазоне свыше 1500 об/мин.

Турбокомпрессор достаточно надежный агрегат, однако если Вы столкнулись с его поломкой, решить проблему Вам помогут специалисты ТурбоМикрон. Мы производим замену турбины на автомобиле, а также ремонт снятых с авто турбокомпрессоров.

Источник: http://turbomicron.by/o-remonte/printsip-raboty-turbin

Твин турбо — принцип работы

Как работает двигатель битурбо

Со сборочных конвейеров известных заводов-производителей часто выходят автомобили, оснащенные сразу двумя турбинами. В данных конструкциях применены системы турбонаддува под названием Biturbo. Турбины различных габаритов здесь расположены последовательно (секвентально) по отношению друг к другу. При включении двигателя сначала вступает в работу маленькая, затем постепенно раскручивается большая.

Спаренная система турбонаддува — зачем она нужна 

При использовании технического устройства «Битурбо» можно получить следующие положительные результаты:

  1. Снижение вероятности возникновения эффекта турбоямы (турбозадержки).
  2. Помощь двигателю при переходе на повышенные режимы.
  3. Повышение мощности мотора, удержание максимального крутящего момента в широком диапазоне оборотов ДВС.
  4. Увеличение экономических параметров транспортного средства (снижение потребления горючего, смазочных материалов, охлаждающей жидкости).
  5. Улучшение экологических показателей (эффективное использование выхлопных газов).

Twin Turbo — описание устройства 

Схематически данная система устроена следующим образом: турбина меньших размеров плавно переходит в более крупную с усиленными техническими характеристиками.

Последовательность включения турбин системы Twin Turbo:

  • при работе машины на пониженных оборотах коленчатого вала задействована первая ступень;
  • как только вращение коленвала возрастает, в работу подключается следующая турбина.

Принцип работы битурбо (Biturbo)

Когда двигатель работает в режиме низких оборотов, выхлопные газы образуются в малых количествах. Турбина первой ступени, имеющая минимальную инерцию, функционирует постоянно, создавая тягу при небольших потоках выхлопа. Как только отработавшие газы начинают проникать в турбину крупных размеров, компрессор постепенно затягивает воздух, создавая необходимое давление во впускных/выпускных клапанах топливной системы.

Другими словами, чтобы создать необходимое давление наддува при малых оборотах, достаточно работы маленького компрессора в условиях ничтожного поступления выхлопа. По мере постепенного увеличения крутящего момента, оборотов двигателя, возрастают потоки отработавших газов, вовлекая в работу элементы большого турбокомпрессора.

Работая в условиях средних режимов мотора, турбокомпрессор первой ступени достигает предела своих возможностей, выдавая максимальную производительность. При этом заметно нарастает ускорение большой турбины, но ее потенциал пока полностью не раскрыт. На входе в первый компрессор постепенно нарастает избыточное давление, все больше сжимающее топливно-воздушную смесь.

Как только количество оборотов коленвала достигает максимальных значений, существенно увеличивается напор выхлопных газов, выхлоп через открытый перепускной клапан напрямую поступает на вторую турбину, загружая ее полностью. Работая при полной загрузке, турбина второй ступени предохраняет маленькую от повышенных механических нагрузок. Происходит согласованная работа двух частей.

При установке на транспортном средстве двойных турбокомпрессоров обеспечивается сверхвысокое давление наддува. В условиях работы компрессора одиночного типа создать подобную эффективность нереально. Теперь водитель имеет возможность плавно ускоряться без турбоямы и различных рывков машины.

Благодаря применению системы двухступенчатого турбонаддува оба турбокомпрессора эффективно функционируют в условиях всех режимов ДВС: от низких оборотов до максимальных соответственно.

Ремонт системы Bi Turbo от ТурбоРотор

Компания Turbo Ротор проводит капитальный ремонт систем турбонаддува Битурбо. О стоимости наших работ вы можете узнать на нашем сайте в разделе стоимость ремонта турбины или связаться с нами по телефону.

Источник: https://turborotor.com.ua/articles/68-tvin-turbo---princip-raboty

7 главных минусов и 2 плюса турбомоторов

Атмосферный мотор засасывает воздух в цилиндры под действием разрежения, которое возникает, когда поршень движется к нижней мертвой точке. В большинстве случаев давление в цилиндре в конце хода впуска чуть ниже атмосферного. И вот с этим количеством воздуха и осуществляется рабочий цикл мотора.

Наддувный двигатель получает на входе в цилиндр воздух, сжатый компрессором до определенного давления, а потому его в цилиндр войдет больше, чем у мотора со свободным всасыванием.

Больше воздуха — больше кислорода, а значит, и топлива сгорит больше, и мощность при том же рабочем объеме поршневой части будет выше (или мотор компактнее при сохранении мощности).

Поскольку воздух в компрессоре подогревается, температуру перед подачей в цилиндр желательно снизить. Это делает специальный охладитель — интеркулер.

Компрессоры могут использоваться разных типов — и с приводом от коленвала, и волновые обменники давления, но наиболее распространен турбонаддув.

Последний способ использует энергию выхлопных газов для вращения центростремительной турбины, а сидящее на том же вале колесо центробежного компрессора обеспечивает сжатие воздуха перед подачей в цилиндры.

Наддувный двигатель потребляет сжатый в компрессоре и охлажденный в интеркулере воздух. И тот же мотор является источником газов с высокими температурой и давлением, которые вращают турбину.Наддувный двигатель потребляет сжатый в компрессоре и охлажденный в интеркулере воздух. И тот же мотор является источником газов с высокими температурой и давлением, которые вращают турбину.

Как видим, конструкция наддувного мотора сложнее, чем атмосферника. Отсюда и первый недостаток турбомоторов

1. Низкая надежность

Наддувные двигатели состоят из большего числа агрегатов, а надежность многокомпонентной системы всегда ниже, чем у более простой. Нагрузки на детали больше из-за большей литровой мощности. Да и конструкционные материалы в автомобильной промышленности используются преимущественно недорогие. Это же вам не аэрокосмическая отрасль

К примеру, у турбокомпрессора есть система регулирования давления наддува, которая порой может заедать и отказывать. У редакционного Volkswagen Golf уже дважды при пробеге 80 000 и 100 000 км полностью теряла подвижность тяга привода клапана перепуска газов мимо турбины.

2. Недостаточный ресурс

Все мы вздыхаем по моторам-миллионникам конца прошлого века. Сейчас ресурс мотора в 400 000 км считается огромным достижением, а в прошлом он был нормой. Турбодвигатели современных автомобилей до таких пробегов не доживают. Турбокомпрессоры на бензиновых моторах редко ходят больше 150 000 км, а начавшая «хандрить» турбина вскоре может погубить и поршневую часть. Ведь турбокомпрессор может «выхлебать» весь запас моторного масла — в поддоне и поршневой части ничего не останется.

А еще многие производители с целью сэкономить «апгрейдят» атмосферные моторы до турбонаддувных, не особо заморачиваясь усилением некоторых деталей. Соответственно, высокие нагрузки на поршневую часть при небольшом усилении конструкции приводят к снижению ресурса.

3. Необходимость более частого и высококвалифицированного обслуживания

Многие производители для своих моделей с турбомоторами снизили периодичность ТО с 15 000 до 10 000 км. Так поступили, к примеру, Geely и Haval.

Наддувный мотор сложнее в обслуживании и особенно в диагностике. У него гораздо больше количество дополнительных соединений в системе турбонаддува. Потерять герметичность могут: подвод и отвод воздуха, подвод и отвод отработанных газов, системы подачи масла под давлением и его слива, а также подачи охлаждающей жидкости. Все это требует дополнительного внимания и опыта у сервисмена во время ТО.

4. Дорогой ремонт

Ремонт наддувного мотора всегда обходится дороже. Даже если турбокомпрессор в ремонтной фирме и не трогали, то прайс на восстановление двигателя все равно выше. Просто потому, что разбирать-собирать все перечисленные выше системы дольше и сложнее. А если предстоит замена турбокомпрессора, то готовьтесь выложить от 60 000 руб. Восстановление узла может потребовать половину этой суммы.

5. Обязательно применять хорошее топливо и смазки

Все современные моторы довольно требовательны к качеству топлива и моторного масла. Но если атмосферник на некачественных жидкостях «умрет» не сразу, то жизнь форсированного наддувного мотора будет измеряться минутами. Кроме того, расход даже самого дорогого масла у наддувного мотора будет выше, чем у большинства атмосферников.

Отдельного разговора требует расход топлива. Любой маркетолог, желающий продать вам машину с турбомотором, будет уверять, что она экономичнее, чем автомобиль с атмосферным двигателем. В теории так и есть. Но ведь турбомашина — это «великий провокатор».

Некоторые автомобилисты сознательно выбирают турбодвигатель, чтобы ездить напористо и агрессивно. В этом случае расход будет не меньше, а даже больше, примерно на 30%, чем у спокойного водителя.

Для неторопливого водителя мощность турбомашины может показаться избыточной, а повышенные затраты на содержание, (частые ТО, дорогие бензин и масло) — неоправданными.

6. Необходимость дополнительного охлаждения

Недаром многие сигнализации имеют опцию «турботаймер». Это устройство позволяет не глушить разогретый турбомотор сразу после остановки машины, а дает двигателю поработать на холостом ходу для охлаждения — прежде всего турбины. Похожий алгоритм у некоторых мощных автомобилей штатно заложен в блок управления двигателем. Без этого в остановившейся, но раскаленной докрасна турбине масло закоксуется, нарушив герметичность уплотнений. В итоге значительно вырастет расход масла на угар.

ЭТО ИНТЕРЕСНО:  Почему идет черный дым из выхлопной трубы дизеля

7. Проблемы с ликвидностью

Обо всех вышеперечисленных неприятностях осведомлены, в той или иной степени, многие автолюбители. Именно поэтому большинство предпочтет на вторичном рынке машину с атмосферным двигателем. А заезженные «турбозажигалки» приобретать будут, в основном, молодые поклонники всех серий «Форсажа».

Впрочем, есть у турбомоторов и неоспоримые плюсы.

1. Отличная характеристика крутящего момента

Разгон автомобиля — хоть с механической коробкой передач, хоть с автоматом — очень зависит от того, насколько быстро мотор из режима холостого хода сможет достигнуть оборотов максимальной мощности. А мощность, как известно, пропорциональна произведению оборотов коленвала на крутящий момент. Именно поэтому нужно, чтобы мотор на как можно более низких оборотах выдавал большой крутящий момент.

Наддувный мотор проектируют так, что турбокомпрессор обеспечивает довольно высокое давление наддува очень «рано», при небольших оборотах коленвала. В результате мы получаем большой крутящий момент на небольших оборотах.

Далее момент увеличивать нельзя во избежание чрезмерных нагрузок на детали мотора. Начинает работать перепускной клапан, направляя часть выхлопных газов в обход турбины. Так производительность турбокомпрессора ограничивается, а на кривой крутящего момента появляется горизонтальная полка.

Вот за такую характеристику турбомоторов их и любят, особенно активные водители.

Мощность и крутящий момент атмосферных двигателей ВАЗ (слева) и китайского турбомотора JLE-4G18TD.Мощность и крутящий момент атмосферных двигателей ВАЗ (слева) и китайского турбомотора JLE-4G18TD.

2. Низкий расход топлива

У атмосферного двигателя значительная часть энергии сгоревших газов теряется вместе с горячими выхлопными газами. Наддувный двигатель использует температуру и давление выпускных газов, срабатывая их в турбине. Меньше энергии пропадает зря, значит, больше используется для движения автомобиля. Но, повторюсь, при условии спокойной манеры вождения.

***

Турбодвигатели совершенствуются и захватывают все новые модельные ряды автомобилей самых разных производителей на всех континентах. Вначале они оккупировали дороги старушки Европы. Япония давно и массово загружает ими внутренний рынок. США и Корея немного более сдержанны в распространении турбированных двигателей. Зато Китай в последнее время массово пересаживается на турбонаддув. Так что за наддувными двигателями будущее. Если, конечно, их не вытеснят электрокары.

  • Самые надежные двигатели (из тех, что еще продаются) мы собрали тут.

Источник: https://www.zr.ru/content/articles/919836-7-glavnykh-nedostatkov-i-2-plyus/

Чем отличается Twin-Turbo от Bi-Turbo?

Многим из вас приходилось слышать о существовании моторов, усиленных двумя турбинами.

Конечно, такие силовые агрегаты доступны лишь избранным по причине высокой дороговизны, но все же, если не приобрести, то хотя бы поинтересоваться каждый из нас имеет право.

А задумывались ли вы, чем отличается Твин-Турбо, от Би-Турбо, ведь на первый взгляд, можно подумать, что это одно и тоже – двигатель, оснащенный двумя турбинами. Давайте немного углубимся в технические характеристики и разберемся что к чему.

Некоторые ошибочно считают, что Twin-Turbo и Bi-Turbo – это разные коммерческие название одной систем наддува. Уверяем, что разница не только в компании, но и в способе наддува.

Двигатели с системой наддува Twin-Turbo

Представим себе, как действует турбина. Она создает определенное давление воздуха, закачиваемого в цилиндры двигателя. В процессе роста оборотов эффективность турбины снижается и, мощность мотора падает. Чтобы исключить падение мощности и обеспечить прирост даже на высоких оборотах, была установлена вторая аналогичная турбина.

Примечательно, что в работу турбины могут вступать по-разному. К примеру, можно настроить турбины таким образом, чтобы они действовали параллельно, либо же, есть возможность настроить так, чтобы сначала давление нагнетала одна турбина, затем, когда ее мощности становится недостаточно, подключалась вторая и, таким образом, компенсировала потерю.

Стоит вспомнить, что система наддува Twin-Turbo может устанавливаться как на V-образные двигатели, так и на рядные, здесь нет особой разницы.

Bi-Turbo также подразумевает наличие двух турбин, однако если в предыдущем варианте турбины были одинаковыми, то Би-турбо включает в себя наличие обычной турбины и увеличенной, более мощной. Турбины обладают последовательным способом включения, то есть на малых и средних оборотах работает первая турбина, на больших оборотах – увеличенная. Благодаря такой конфигурации обеспечивается ровный разгон автомобиля.

В свою очередь, устанавливаться Bi-Turbo также может и на V-образные двигатели, и на рядные.

Отличие в работе Bi-Turbo от Twin-Turbo

Итак, конструктивные особенности каждой из систем повлияли на общий характер поведения автомобиля.

Если система Bi-Turbo, благодаря использованию разных по мощности турбин, обеспечивает автомобилю равномерный разгон, без потери, или резкого увеличения мощности, то главным приоритетом Twin-Turbo является снятие максимальной мощности с мотора.

Twin-Turbo, в отличие от конкурента все еще страдает т.н. турбоямой, т.е. небольшой задержкой, пока раскрутится турбина и даст прирост. Отсюда возникает и резкий толчок в разгоне, с системой Bi-Turbo разгон происходит плавно.

Наконец, система Bi-Turbo может использоваться не только на трассе, или гоночных треках, но и в езде по городу. Автомобили с турбонаддувом Twin-Turbo такой возможности лишены.

Разумеется, обе системы турбонаддува являются очень дорогими и тяжелыми в обслуживании, поэтому встретить их можно только на автомобилях премиум-класса.

Источник: http://pro-tachku.ru/pro-avto/chem-otlichaetsya-twin-turbo-ot-bi-turbo.html

Спор о названиях: отличия Biturbo и Twinturbo

На современных автомобилях нередко применяется турбонаддув — он позволяет повысить мощность двигателя благодаря увеличению количества топлива, впрыскиваемого в цилиндр за один цикл.

Ещё с середины XX века существуют автомобили, в которых используются сразу две турбины — такую компоновку называют Twinturbo, Biturbo, Double Turbo и другими словами.

Нередко можно встретить информацию о принципиальных различиях Твинтурбо и Битурбо — в отдельных статьях приводятся определения и сущность уникальных конструктивных элементов. Попробуем разобраться в компоновке этих систем и мы.

Турбонаддув всё чаще применяют для повышения мощности двигателя

Сущность вопроса

Самый интересный момент в этой проблеме заключается в том, что принципиальных отличий как раз не существует. Biturbo и его аналог Twinturbo являются просто альтернативными названиями одинаковых систем наддува с двумя компрессорами. Причём как Biturbo, так и Twinturbo предполагают использование различных вариаций технической части.

Различные названия были придуманы маркетологами известных автомобильных производителей, чтобы выделить свою продукцию среди множества аналогичных машин, построенных с применением той же компоновки.

Интересно, что японцы предпочитать свои сдвоенные турбокомпрессоры Twinturbo, тогда как европейские компании пишут Biturbo — так сложилось исторически. В нашу страну поступают машины из обеих частей света, поэтому что название Biturbo, что Twinturbo знакомы отечественному потребителю.

Поэтому спор о различиях между названиями турбокомпрессоров можно считать несостоятельным — а вот узнать о принципиально разных системах, используемых в международной практике, будет интересно.

Классика жанра

Если вы знаете, что такое турбонаддув, то поймёте, что в установке двух турбокомпрессоров есть свои сложности. Обе турбины системы Biturbo приходится устанавливать на одну выхлопную магистраль, причём между ними должно сохраняться определённое расстояние.

Проблема заключается в том, что дальний турбокомпрессор будет получать меньше энергии и работать не столь эффективно. В середине XX века эту проблему решали достаточно просто — вторая турбина в компоновке Twinturbo имела отличающиеся характеристики подшипников и форму крыльчатки.

За счёт этого удавалось синхронизировать работу двух агрегатов и существенно повышать мощность двигателя при помощи системы Biturbo.

Система Biturbo используется всё реже

Однако практика показала, что последовательная компоновка Twinturbo имеет несколько важных недостатков:

  • Наличие серьёзной «турбоямы», то есть диапазона оборотов, в котором турбины попросту не работают;
  • Достаточно большое время отклика на подачу газа;
  • Ускоренный износ ближней турбины;
  • Неудобство установки на V-образные моторы.

Проблему пытались решить различными способами. Однако наиболее элегантное и эффективное инженерное решение предложила компания Toyota, которая сделала включение турбокомпрессоров своего варианта Biturbo.

На низких оборотах клапаны закрыты и выхлопные газы проходят только через небольшую первую турбину, легко раскручивая её и обеспечивая ранний выход из «турбоямы».

После достижения 3500 об/мин, когда давление газов уже становится избыточным, электроника открывает специальную заслонку, и горячий поток устремляется ко второму турбокомпрессору большего размера, обеспечивая существенный прирост мощности двигателя.

Современная интерпретация

Однако с массовым распространением V-образных моторов последовательная система Biturbo стала применяться всё реже, поскольку использовать её было неудобно с конструктивной точки зрения.

Приблизительно в начале 80-х была предложена альтернативная компоновка Twinturbo, в которой каждая турбина была закреплена за несколькими цилиндрами двигателя — как правило, речь шла о той или иной «половинке» блока.

Турбокомпрессоры могли располагаться намного ближе к впускному и выпускному коллектору, что существенно уменьшило уровень механических и аэродинамических потерь, а также повысило мощность двигателя. Кроме того, параллельная система Biturbo, использующая компактные турбины, позволила избавиться от «турбоямы» и сделать мотор очень чувствительным к изменению подачи топлива.

В большинстве случаев параллельная схема Twin Turbo предполагает использование общего впускного коллектора, что упрощает её и делает менее затратной в обслуживании, но ограничивает динамический потенциал автомобиля.

Поэтому в качестве альтернативы была предложена компоновка Biturbo с раздельными впускными трактами и коллекторами.

Помимо прочего, это позволило адаптировать систему для использования на компактных рядных моторах, которые ранее оснащались исключительно двумя турбокомпрессорами, расположенными последовательно.

Однако наиболее интересную схему Twinturbo предложила компания BMW — её отличие заключалось в расположении турбин в развале V8, а не по сторонам от блока цилиндров.

Причём каждый из турбокомпрессоров был запитан от цилиндров, находящихся по обе стороны двигателя! Несмотря на огромные сложности, которые пришлось преодолеть инженерам, результат превзошёл все ожидания.

Такая оригинальная система Biturbo уменьшила протяжённость «турбоямы» на 40% без снижения надёжности узла. Кроме того, существенно повысилась стабильность работы двигателя и уменьшилась интенсивность его вибраций.

Не совсем Битурбо

Иногда с компоновкой Twinturbo путают турбину Twinscroll. Последняя предполагает использование одной турбины, имеющей два канала и два участка крыльчатки с разной формой лопастей.

На низких оборотах открывается клапан, ведущий к меньшей крыльчатке — в результате турбокомпрессор разгоняется достаточно быстро и обеспечивает прирост мощности без «турбоямы».

Однако с повышением скорости вращения коленвала давление выхлопных газов становится избыточным и открывается второй клапан — теперь используется только большая крыльчатка. Как следствие, автомобиль получает дополнительный рост производительности.

Конечно, такая система имеет несколько меньшую эффективность, чем классическая Biturbo. Однако в сравнении с одной турбиной тяговые возможности двигателя всё же возрастают. Конечно, компоновка Twinscroll сложна в производстве и считается достаточно ненадёжной. Однако в настоящее время её очень часто применяют в мощных автомобилях — в том числе и в составе системы Biturbo.

Совместить несовместимое

Если вы знаете, чем отличается механический компрессор от турбины, то поймёте, почему эти две системы считаются несовместимыми — первый приводится от коленвала, тогда как турбокомпрессор использует энергию выхлопных газов и совместить их практически невозможно.

Однако для инженеров Volkswagen нет ничего невозможного — в свой вариант системы Twinturbo они включили оба узла. Турбина работает постоянно, тогда как компрессор помогает устранить «турбояму» на низких оборотах.

Впоследствии он отключается, но при резком нажатии педали газа вновь вступает в действие, улучшая реакцию двигателя на подачу топлива.

Результатом использования такого варианта Biturbo стало значительное повышение мощности, достижение предела крутящего момента на малых оборотах, ускорение набора оборотов, а также уменьшение времени отклика на нажатие педали газа.

Разница с простым Twinturbo для водителя практически незаметна — он чувствует лишь легко прогнозируемую мощную динамику и не отвлекается на провалы мощности либо иные проблемы. Однако система, разработанная Volkswagen, оказалась очень сложной в производстве и ненадёжной.

Поэтому в настоящее время на машинах брендов, входящих в группу компаний, использует только один из двух вариантов наддува.

Итоги

Резюмируя вышесказанное, можно сделать вывод о том, что отличия Twinturbo от Biturbo заключаются только в названии. Если же вас действительно интересуют различные системы наддува, вам стоит обратить внимание на параллельные и последовательные компоновки. Кроме того, нелишним будет более подробно ознакомиться с отличиями турбокомпрессора от механического наддува и плюсами их совместного применения.

Источник: http://365cars.ru/soveti/biturbo-i-twinturbo-otlichiya.html

Принцип построения турбированных двигателей по системе Twin-Turbo

Система из двух работающих турбокомпрессоров на данный момент является очень актуальным вариантом улучшения стокового двигателя. Здесь можно почерпнуть для себя общую информацию касательно этой темы.

Борьба за повышение КПД (коэффициент полезного действия) идет с самого появления двигателя внутреннего сгорания как такового. И почти сразу же вслед за ДВС придумали и турбокомпрессоры и просто механические нагнетатели воздуха.

Для лучшего понимания стоит знать, что принцип работы двигателя основывается на правильном соотношении топлива и воздуха, что попадает в цилиндры двигателя. Равняется это правильное соотношение 1:14,7. Именно в таком виде обеспечивается качественное распределение смеси по цилиндру и ее сгорание.

Установка турбины, или даже двух турбин в виде twin turbo значительно увеличит количество воздуха и давление с которым он будет поступать в двигатель.

Twin Turbo

Основы

Если дословно перевести twin turbo английского языка, то выйдет или «двойное турбо» или «удвоение турбо». В принципе, правильными являются оба варианта. То есть, из названия можно понять, что имеют место быть не одна, а две турбины. Существует несколько разновидностей способов применения двух нагнетателей одновременно:

  • Ступенчатая.
  • Параллельное.
  • Последовательное.

Любая из систем, так или иначе, управляется электронным блоком управления, без него создать эффективную работу твин турбо будет невозможно. ЭБУ управляет входными датчиками турбокомпрессоров, электрическими системами приводов клапанов управления воздуха, за счет чего происходит очень тонка настройка работы твин турбо.

Параллельный принцип работы

Параллельное твин турбо представляет собой одновременную работу двух турбокомпрессоров, который работают параллельно друг другу. Одинаковая работа двух турбин получается за счет того, что каждая турбина выхватывает одинаковую порцию выхлопных газов.

Из каждого компрессора выходит также равное количество воздуха и под равным давлением. Сжатый воздух поступает в общий для них впускной коллектор, где потом уже происходит распределение по цилиндрам. Параллельное twin turbo характерно для V-образных двигателей, особенно для дизельных, где очень важна степень инерционности.

Две небольших турбины обеспечивают более меньшую инерционность, нежели одна большая.

Последовательная работа

Смысл работы последовательного twin turbo заключается в том, что турбокомпрессоры работают не одновременно, а последовательно сменяют друг друга. То есть запустив двигатель работает один компрессор, а по степени увеличения количества оборотов коленчатого вала включается второй. Такое решение позволяет экономить топливо и не использовать постоянно одну из турбин. К слову, такая система твин турбо включает два одинаковых по характеристикам компрессора.

Переход между турбинами также обеспечивает электронный блок управления. В такой системе основной его задачей является регулирование и распределение потока сгоревших газов между турбинами. Регулирование потока газов ко второму компрессору осуществляется за счет специального электромагнитного клапана. Также нередко в ЭБУ заносят такие характеристики для турбин, чтобы минимизировать побочный эффект турбозадержки.

Применение twin turbo было замечено как на бензиновом, так и на дизельном двигателе.

Двойная турбина

Ступенчатая работа турбин

Рассматривая ступенчатую систему твин турбо важно отметить, что именно она является самой технически грамотной и совершенной, обуславливает самый большой подъем КПД. В такой системе присутствует электронное управление как сгоревшими газами, так и выходящим потоком сжатого воздуха.

ЭТО ИНТЕРЕСНО:  Как снять верхнюю шаровую на ваз 2107

Здесь, в отличие от предыдущих вариантов, есть возможность применять два разных по размеру турбонаддува. Когда обороты двигателя низкие перепускной клапан сгоревших газов закрыт. Газы следуют по системе твин турбо сначала посещая малый компрессор, где получают максимальную отдачу на давление при минимальной инерции.

Далее, они попадают в большую турбину. Когда обороты увеличиваются начинается совместная работа турбин. Перепускной клапан постепенно открывается, то начинает постепенно раскручивать вторую турбину, пуская газы прямо через нее.

Когда обороты растут до максимальных, то клапан открывается полностью, и большая турбина начинает работать на полную свою мощность и воздух поступает из нее в двигатель.

Вам также может понравиться

Источник: https://autodont.ru/inlet-system/turbonadduv/twin-turbo

Твин турбо на вашу машину

Очевидно, что турбокомпрессор (он же – турбина) устанавливают на двигатель автомобиля для увеличения его мощности. В настоящее время технический прогресс позволяет использовать для максимально полного достижения этой цели систему наддува BITURBO и  ТWIN-TURBO. Часто возникает вопрос, есть ли между ними разница? Что это: две разных системы наддува или два названия одной системы?

“BI” или “TWIN”

Когда автомобили с двумя турбинами только начали появляться, почти все они назывались БИТУРБО. С течением времени и развитием прогресса появилась система последовательного наддува с двумя  последовательно расположенными нагнетателями, а за ней – и еще более совершенная система двухступенчатого наддува. Во всех этих случаях в процессе участвуют две турбины. Какие из них как называть, решать вам – для этого дочитайте эту статью до конца.

Как уже говорилось, изначально все эти системы наддува назывались БИТУРБО. Отмечу, что ещё до появления последовательного наддува автомобили с параллельно установленными турбинами стали называть уже по-новому – ТВИН-ТУРБО, затем это название стали применять и к последовательному, и к двухступенчатому наддуву.

Так же складывалась ситуация и у мировых производителей: кто-то при выпуске серийного а/м называл современный последовательный наддув БИТУРБО, а кто-то параллельный вид наддува  – ТВИН-ТУРБО. Решение автопроизводителя было в некотором роде непредсказуемо.

Например, Volvo S80/XC90 (B6284T/B6294T) R6 Twinturbo , BMW 335/535 N74  (V 12 TwinPower Turbo).

Твин-турбо

И это еще не самое интересное. Выражение «TwinPower Turbo» компания BMW использует и для двигателей с одним турбокомпрессором механизма Twin Scroll. Этот факт в очередной раз доказывает, что выбор одного из двух этих названий обусловлен исключительно прихотью автопроизводителя и не имеет прямого отношения к конструктивной схеме.

Система BITURBO отличается от системы TWIN-TURBO только тем, что раньше говорили  BITURBO , а теперь стало модно ТВИН.

Конечно, чтобы быть абсолютно точным, надо помнить, что известные мировые автопроизводители называют  свои, зачастую индивидуально заряженные, версии на заводах – и стало быть, как они пишут, так надо и называть.

В подтверждение этого простого-сложного вопроса, прочтём, какие названия давал производитель двигателям, оснащенным двумя турбокомпрессорами, работающими по параллельной схеме наддува:

  • Audi 2.7 Biturbo (V6 Biturbo, A6/S4/RS4)
  • Audi 4.2 Biturbo (V8 Biturbo, RS6)
  • Audi 4.0 TFSI (V8 Twinturbo/Biturbo, S6/RS6/S7/RS7/A8/S8)
  • BMW N54 (R6 TwinPower Turbo, 135i/335i/535i/740i/Z4/X6/1M Coupe)
  • BMW N63/S63 (V8 TwinPower Turbo, 550i/650i/750i/X5/X5 M/X6/X6 M/M5/M6)
  • BMW N74 (V12 TwinPower Turbo, 760i)
  • Mercedes-Benz M278/M157/M158 (V8 Bi-turbo, S500/CL500/CLS500/E550/GL550/S63 AMG/CL53 AMG/CLS63 AMG/E63 AMG/SLK55 AMG)
  • Mercedes-Benz M275/M285/M158 (V12 Bi-turbo, S65 AMG/CL65 AMG/SL 65 AMG/ Maybach/Pagani)
  • Porsche 3.6/3.8 Turbo (H6 Twinturbo, 911 Turbo/Turbo S/GT2/GT2 RS)
  • Porsche 4.5/4.8 Turbo (V8 Twinturbo, Cayenne Turbo/Panamera Turbo)

Разновидности BITURBO/TWIN-TURBO

Разобравшись с тем, что два эти названия взаимозаменяемы, можно поговорить о разных системах из двух турбин. Различают несколько видов системы  BITURBO/TWIN-TURBO:

  • Параллельный;
  • Последовательный;
  • Ступенчатый.

Поговорим о них подробнее.

Параллельная система наддува – система двух турбин, относящихся к одному виду и размещенных параллельно. При этом турбины  работают одновременно. Преимущества параллельной системы в том, что в ее случае две небольшие или средние турбины обладают меньшей инерционностью по сравнению с одной мощной, но большой турбиной.

Такая система соединения позволяет турбокомпрессорам равномерно распределять между собой потоки газов во время работы. Сначала сжатый воздух подается компрессорами в общий для них впускной коллектор. Затем этот воздух может распределяться по цилиндрам, или, реже, подаваться раздельно для каждого ряда цилиндров. Параллельная система наддува чаще всего используется в работе дизельных V-образных двигателях, где каждый турбонагнетатель зафиксирован на собственном выпускном коллекторе.  

Таким образом, при параллельной системе турбонаддува турбины работают на всех оборотах двигателя, а так называемая «турбояма» становится существенно меньше.

Последовательная система турбонаддува представляет собой систему из двух полностью одинаковых турбин. При этом существенное отличие работы такой системы в том, что одна турбина функционирует постоянно, а вторая подключается к работе только при возрастании числа оборотов мотора. Чтобы второй турбокомпрессор запускался вовремя, в систему введена схема электронной регулировки его работы с помощью специального клапана, что и делает эту систему более сложной.

Ступенчатая система турбонаддува является самой сложной, эффективной и современной реализацией принципа BI/TWIN-TURBO. В двухступенчатую систему объединяются две турбины – малая и большая. Они установлены во впускном и выпускном тракте. При работе турбокомпрессоров происходит клапанная регулировка отработанных газов и сжатого воздуха.

При увеличении оборотов двигателя начинается одновременная слаженная работа обеих турбин. При этом происходит раскрытие перепускного клапана отработанных газов, вследствие чего некоторая их часть проходит через большую турбину, и она раскручивается сильнее.

 По достижении некоторого определенного уровня давления на впуске турбонагнетатель большой турбины сжимает воздух (при этом давление еще не достаточное). Затем сжатый воздух поступает в компрессор малой турбины,  и там давление продолжает расти. Пи этом перепускной клапан наддува остается все еще закрытым.

Когда, наконец, двигатель достигает максимальной нагрузки, происходит полное открытие перепускного клапана. Отработанные газы проходят через большую турбину, из-за чего она раскручивается до самой высокой частоты, а вот малый турбокомпрессор в это время прекращает движение.

На впуске большой компрессор создает наибольшее давление наддува, а малый, в свою очередь, напротив, обеспечивает сопротивление воздушным потокам. В результате в некоторый момент перепускной клапан наддува раскрывается, и происходит поступление сжатого воздуха непосредственно в двигатель.

Как видно из всего вышесказанного, двухступенчатая система BI/TWIN-TURBO создана специально для того, чтобы поддерживать максимально возможную эффективную  работу турбонагнетателя при всех без исключения режимах работы двигателя автомобиля.

Источник: https://turbo-lider.com/twin-turbo/

Би-турбо (Bi-Turbo) и Твин-турбо (Twin-Turbo), двойной наддув – различия. Так отличаются или нет?

Турбированные двигатели не так просты, как кажется, рядом с этой темой витает много непоняток и неопределенностей. Одна из таких – про два строения «би-турбо» и «твин-турбо». Не так давно сам лично был свидетелем разговора двух автовладельцев, один заверял — что разница есть, а вот другой – что отличий нет! Так в чем же правда? Действительно, чем отличаются эти два строения ТУРБО моторов, давайте разбираться

Если честно, то разница, конечно — будет, но она не будет носить категорический характер! Лишь потому что названия взяты у разных производителей, которые устанавливают свои агрегаты с различной компоновкой и строением.

Однако и система «Би-турбо» и «Тви-нтурбо» — по сути одно и тоже.

Если взять английский язык и посмотреть на обозначение, Bi-Turbo и Twin-Turbo, можно увидеть две приставки «Bi» и «Twin» — если грубо перевести то получается – «ДВА» или «ДВЕ».

Не что иное — как обозначение наличия двух турбин на двигателе, причем и одно и другое название можно применять к одному и тому же двигателю, то есть они абсолютно — взаимозаменяемые. Эти названия не несут в себе какие-то технические различия, так что это «голый маркетинг».

Две турбины на двигатель – как и зачем?

Сейчас может возникнуть вопрос, а вообще зачем? Все просто есть всего два вопроса, которые они призваны решать:

  • Устранение турбоямы, можно сказать, что это первоочередная проблема.
  • Увеличение мощности.
  • Строение двигателя.

Начну, пожалуй, с самого простого пункта – это строение двигателя. Конечно, легко ставить одну турбину, когда у вас есть рядный двигатель на 4 или 6 цилиндров. Глушитель то один. Но вот что делать, когда у вас скажем V образный мотор? И по три – четыре цилиндра на каждую строну, тогда и глушителя два! Вот и ставят на каждый по турбине, средней или малой мощности.

Устранение турбоямы – как я уже писал сверху, это задача номер «1».

Все дело в том что у турбированного мотора, есть провал — когда вы нажимаете на газ, отработанным газам нужно пройти и раскрутить крыльчатку турбины, именно это время и «проседает» мощность, это может быть от 2 до 3 секунд! А если вам на скорости нужно сделать обгонный маневр – это не безопасно! Вот и устанавливают различные турбины, а зачастую компрессор + турбина. Один работает на низких оборотах, то есть на старте, чтобы избежать «турбоямы», вторая – на скорости когда нужно оставить тягу.

Увеличение мощности – это самый банальный случай. То есть для увеличения мощности мотора, к маломощной турбине устанавливают еще одну мощную, таким образом — дуют они две, что значительно повышает производительность. Кстати на некоторых гоночных машинах, есть и три и даже четыре турбины, но это очень сложно и в серию, как правило не идет!

Вот собственно и решения, для которых применяют «ТВИНТУРБО» или «БИТУРБО» и знаете это реально выход, от избавления от турбоямы и увеличения мощности.

Про строение

Сейчас на многих авто применяются всего два основных строения — расположения двух турбин. Это параллельное и последовательное (известное еще как секвентальное).

Например, некоторые Мицубиши имеют именно «ТВИНТУРБО», но параллельную работу, как я уже отмечал сверху, это две турбины на агрегате V6, по одной на каждую сторону. Дуют они в общий коллектор. А вот например на некоторых АУДИ, также есть параллельная работа на двигателе V6, но название «БИТУРБО».

На автомобилях Тойота в частности на «СУПРА», стоит рядная шестерка, однако тут также есть два наддува – работают они в хитром порядке, могут работать сразу два, могут один работает, другой нет, могут включаться попеременно. Все зависит от вашей манеры езды – добиваются такой работы «хитрыми» перепускными клапанами. Вот вам последовательно-параллельная работа.

Как и на некоторых автомобилях СУБАРУ – первая (малая) нагнетает воздух на низких оборотах, вторая (большая) подключается только тогда, когда обороты значительно выросли, вот вам и параллельное включение.

Так разница все же есть или отличий вообще нет? Знаете негласно, производители все же отличают эти два строения, давайте подробнее.

БИ-ТУРБО (BI-TURBO)

Как правило, это два последовательно включаемых турбины в работу. На ярком примере СУБАРУ – одна малая и затем другая большая.

Малая раскручивается намного быстрее, потому как не обладает большой инерционной энергией – логично она включается в работу на низах, то есть первой. Для малых скоростей и до невысоких оборотов этого вполне достаточно.

Но при больших скоростях и оборотах этот «малыш» практически бесполезен, тут нужна подача, куда большего объема сжатого воздуха – включается вторая более тяжелая и мощная турбина. Которая дает нужную мощность и производительность.

Что дает такое последовательное размещение в BI-TURBO? Это почти исключение турбоямы (комфортное ускорение) и высокая производительность на высоких скоростях, когда тяга остается даже на скоростях за 200 км/ч.

Нужно отметить, что могут быть установлены как на V6 агрегат (с каждой стороны по своей турбине), так и на рядную версию (здесь могут разделить выпускной коллектор, например с двух цилиндров дует одна, с других двух другая).

Минусами можно назвать высокую стоимость и работы по настройки такой системы. Ведь здесь применяются тонкие настройки перепускных клапанов. Поэтому установка обусловлена на дорогих спортивных машинах, таких как ТОЙОТА СУПРА, либо на авто элитного класса – МАЗЕРАТТИ, АСТОН МАРТИН и т.д.

ТВИН-ТУРБО (TWIN-TURBO)

Здесь в основном стоит задача не избавиться от «турбоямы», а максимально повысить производительность (нагнетание сжатого воздуха). Как правило работает такая система на высоких оборотах, когда один нагнетатель не может справиться с возросшей на него нагрузкой, поэтому устанавливается (параллельно) еще один такой же. Вместе они нагнетают воздуха в два раза больше, что даете почти такой же прирост производительности!

Но как же «турбояма», что она здесь свирепствует? А вот и нет, ее тоже эффективно побеждают только немного другим способом. Как я уже говорил, малые турбины гораздо быстрее раскручиваются, так вот представьте – меняют 1 большую, на 2 малых – производительность практически не падает (работают параллельно), а вот «ЯМА» уходит потому как реакция быстрее. Поэтому, получается, создать нормальную тягу, с самого низа.

Установка может быть как на рядные модели силовых агрегатов, так и на V-образные.

Производство и настройка намного дешевле, поэтому это строение применяется у многих производителей.

Турбина + компрессор

Это тоже можно назвать «БИ-ТУРБО» или «ТВИН-ТУРБО» — как хотите. По сути, и компрессор и турбо вариант, делают одну работу, только один (механический) намного эффективнее в низах, другой (от отработанных газов) — в верхах! Про различия наддувов читаем здесь.

Как правило, компрессор устанавливается на ременную передачу от коленчатого вала двигателя, поэтому максимально быстро раскручивается с ним. Тем самым позволяя избегать «ЯМЫ», а вот на высоких оборотах он бесполезен – тут уже вступает турбо вариант.

Этот симбиоз применяется на некоторых немецких машинах, большой плюс компрессора, что у него намного выше ресурс, чем у оппонента!

Сейчас небольшое видео, смотрим

Источник: http://avto-blogger.ru/dv/bi-turbo-i-twin-turbo.html

Битурбо (твинтурбо)

Битурбо (твинтурбо) – неофициальное обозначение наддувного мотора с двумя турбокомпрессорами. Прежде всего следует сразу пояснить, что разницы между терминами битурбо и твинтурбо не существует.

Просто обозначение битурбо в мире более распространенное, чем твинтурбо ввиду наличия известной в 80-90х годах модели Maserati Biturbo, ставшей первопроходцем применения схемы битурбо на серийных автомобилях.

Вот, собственно говоря, и вся разница.

Схема битурбо двигателя Maserati

Смысл схемы битурбо или твинтурбо заключается в том, что два турбокомпрессора имеют меньшую инерционность и их турбины быстрее раскручиваются, что приводит к увеличению отдачи мотора.

Также встречаются последовательные схемы битурбо, где одна турбина работает на низких оборотах двигателя, а вторая подключается позже.

К наиболее ярким примерам современного применения битурбо относятся суперкары: Pagani Huayra, Koenigsegg Agera, McLaren MP4-12C.

Обычные автомобили с турбонаддувом, как правило, довольствуются одним турбокомпрессором, а схема битурбо – это более сложный механизм, поэтому применяется только на самых мощных версиях гражданских моделей.

Кроме того, в последнее время экономически выгодным выглядит применение более дешевой схемы twin-scroll даже на мощных модификациях.

ЭТО ИНТЕРЕСНО:  Как натянуть ремень грм на калине 8 клапанов

В свою очередь, для повышения эффективности дизельных двигателей часто предпочитают применять один турбокомпрессор взамен битурбо, но с изменяемой геометрией турбины.

К наиболее изощренным технически схемам повышения отдачи наддувных моторов следует отнести компоновку с тремя турбокомпрессорами (BMW X5 M50d) или с четырьмя (Bugatti Veyron), а также комбинированную схему Twincharger, где в паре с турбокомпрессором трудится механический нагнетатель (модели концерна Volkswagen и Volvo). Ну а самым распространенным способом повышения отдачи наддувных моторов остается интеркулер, который применяется практически на всех современных двигателях с турбонаддувом.

Пионеры серийного применения битурбо, таблица

Марка Год выпуска Рабочий объем двигателя, л Мощность, л.с.
Ferrari F40 1987 2,9 478
Jaguar XJ220 1991 3,5 500
Maserati Biturbo 1981 2,0 180
Mitsubishi 3000 GT 1990 3,0 280
Nissan Skyline GT-R 1989 2,6 280
Porsche 959 1986 2,8 450
Toyota Supra 1986 2,0 205

Источник: https://topruscar.ru/terms/biturbo

TwinPower Turbo на моторах BMW, чем они отличаются и в чем их преимущества

В пути от базовой серии до спортивного суперкара M5 бренд BMW всегда бросал вызов законам автомобильной логики.

Автомобили, которые казались невероятно быстрыми на бумаге, превосходили все ожидания при запуске в серию и при реальном знакомстве.

Многие, если не все двигатели BMW работают, словно по волшебству, но когда открывается капот очередного баварского шедевра, под ним не оказывается древних германских рун, только на защите силового агрегата красуется надпись «TwinPower Turbo».

BWM всегда проповедовал политику турбонаддува и заднего привода. Сегодня не встретить силового агрегата марки, который не имеет хотя бы одного турбонаддува, не говоря уже о серии высокопроизводительных дизелей с трех- и четырехтурбинными установками.

TwinPower играет важную роль, когда речь идет об эффективных и динамичных бензиновых и дизельных двигателях BMW. Но что такое TwinPower Turbo в реальности и что он может предложить автомобильному миру?

Когда речь заходит о бензиновых двигателях, TwinPower Turbo, то есть три компонента, которые применяются во всех модификациях, от 3 до 12 цилиндров:

• вальветроник;
• прямой впрыск топлива;
• турбонаддув.

Турбодизели оборудуются системой впрыска Common Rail.

Valvetronic – электронный переменный клапан. Это технология, разработанная BMW, которая позволяет оптимизировать потребление топлива путем регулирования подъема клапана. Разработчики утверждают, что эта технология сама по себе способна уменьшить расход топлива на 10%.

Вольветроник – мощная электронная технология. Она обеспечивает непрерывный и точный контроль над подъемом впускного клапана. Это означает, что когда владелец баварца нажимаете педаль газа, запускается контроль открытия клапанов, вместо обычной дроссельной заслонки открываются системы впуска.

В системе используется набор рокеров, управляемый электронным распределительным валом. Поскольку она способна регулировать клапаны от полностью открытого до почти закрытого состояния, двигатель не нуждается в оборотах для увеличения нагрузки.

Valvetronic был впервые представлен в 2001 году на модели серии 316ti и использовался в основном для двигателей с наддувом, ориентированных на массовую продажу, таких как:

• N42 straight-4;
• N52 straight-6.

Но система не использовалась на двойном турбонаддуве N54. Вместо этого турбонаддув N55 straight-6, заменивший его в 2009 году с такими же характеристиками, как и у N74 twin-turbo V12 топовой 7-й серии, был оснащен системой вальветроник. После этого технология применялась практически на всех автомобилях BMW.

High Precision Injection – системы непосредственного впрыска с центральными многозубчатыми инжекторами. Они постепенно заменили технологии, использовавшиеся 2000-х годах. Двигатели с наддувом и с турбонаддувом использовали пьезоинжекторные форсунки.

Однако новый 6-цилиндровый турбодвигатель BMW N55, запущенный в производство с 2010 года, устанавливавшийся в моделях 335i, 535i, X3, X5 и X5, использует систему впрыска соленоида, разработанную Bosch.

Эта система была выбрана баварцами, чтобы сохранить конкурентоспособные цены на североамериканском автомобильном рынке.

Название TwinPower Turbo сбило с толку многих автовладельцев. Они не понимали, что находится под капотами их BMW. В связи с этим на компанию был подан судебный иск за обман большого количества людей. В документе TwinPower Turbo был назван «ложным двойником» и говорилось, что баварцы запустили рекламную кампанию с целью обмануть покупателей. Все дело в слове «двойной», которое присутствует в названии. Его наличие не было гарантией оснащения двигателей двумя турбонаддувами.

Первоначально TwinPower Turbo появился на двухпролетном одиночном турбонаддуве (устанавливался на 5 серию Gran Turismo в 2009 году, а в 2010 году появились модели E90 335i, 135i, X3 и X5), начиная с N55 (шестицилиндровым двигателем с турбонаддувом) и N74 (6-литровый V12 агрегат с двумя турбонаддувами). Им оснащались модели 760i и 750Li 2009 года выпуска. Двухскоростной турбонаддув – основная технология для TwinPower Turbo BMW.

Конструкция с двумя турбинами начинается с выпускного коллектора, разделяющего выхлопные газы. Они проводятся через разные спирали, называемые «свитками». Турбо имеет два сопла разных диаметров, они нужны для обеспечения быстрого отклика силового агрегата. BMW называет специальный выпускной коллектор собственной разработки Cylinder-Bank Comprehensive Manifold или CCM.

Следует напомнить, что современные двигатели BMW TwinPower не обязательно оснащаются двухтактными турбокомпрессорами. Зато у них есть отличный выпускной коллектор, который улавливает больше выхлопных газов для подачи в турбины, что обеспечивает мощность без запаздывания.

Трехцилиндровая революция: B37 и B38 TwinPower Turbo. Бензин и дизель

Очередным революционным решением BMW стали трехцилиндровые бензиновые и дизельные двигатели, которые могут соперничать с модификациями, имеющими большее количество цилиндров. Они построены по модульной системе, где используются такие же 500-сантиметровые цилиндры совместно с технологией TwinPower Turbo мощностью 120–220 лошадиных сил.

Известно, что дизельные агрегаты получили обозначение B37, а бензиновые — B38. Первые образцы установлены на гибридном спортивном автомобиле i8 серии FWD 1 и MINI. Они также используются сериями RWD 1 и 3 в качестве стартовых модификаций модельного ряда двигателей.

Лучшие 4-цилиндровые турбо в мире

Источник: https://1gai.ru/publ/518983-twinpower-turbo-na-motorah-bmw-chem-oni-otlichayutsya-i-v-chem-ih-preimuschestva.html

Принцип работы турбины на бензиновом двигателе

Количество выпускаемых автомобилей с турбированными двигателями постоянно растет, поскольку подобные авто пользуются спросом на рынке. Однако далеко не все автовладельцы знают, как работает турбина на бензиновом двигателе, хотя и проявляют интерес к этой тематике. Дело тут вовсе не в лени, а в чрезмерно сложной подаче материала, делающей его недоступным для понимания большинства автомобилистов.

:

Для начала необходимо понять, для чего нужна турбина: она позволяет увеличить мощность небольшого по объему мотора без вреда для него и без увеличения расхода горючего. Но существуют определенные особенности эксплуатации, соблюдение которых даст возможность повысить эффективность, и продлить общее время работы силового агрегата.

Устройство турбонаддува

Турбина двигателя, работающего на бензине, состоит из таких элементов:

  1. Корпус подшипников, размещающий в себе ротор с валом и кольцами с лопастями. Вращаясь, они перенаправляют воздух в цилиндры.
  2. Каналы, проходящие через весь корпус. Их функция заключается в доставке масла к вращающимся и трущимся друг о друга элементам, что способствует увеличению срока их службы.
  3. Подшипник скольжения, гарантирующий плавную работу ротора, смазываемого и охлаждаемого маслом.
  4. Корпус, по форме чем-то напоминающий улитку, защищающий составные элементы механизма от механических повреждений.

Турбонаддув: принцип работы

Задача турбины – нагнетать воздух в цилиндры, что осуществляется при помощи компрессора. Благодаря этому, смесь из топлива и воздуха насыщается кислородом, что приводит к увеличению КПД и улучшению сгораемости топлива. Таким образом, движок начинает работать эффективнее при прежнем объеме.

Чтобы понять принцип работы турбины на двигателе, сначала стоит разобраться с тем, как именно работает обычный двигатель. Его функционирование обеспечивается четырьмя последовательными тактами:

  1. Впуск – движение поршня обеспечивает попадание в камеру сгорания топливно-воздушной смеси.
  2. Компрессия – горючая смесь сжимается.
  3. Расширение – выработанная свечами искра приводит к возгоранию смеси.
  4. Выпуск – поршень перемещается вверх, освобождаются и выводятся выхлопные газы.

Чтобы повысить эффективность работы мотора, идти можно по одному из трех путей:

  1. установить турбонаддув;
  2. увеличить объем двигателя;
  3. повысить количество оборотов коленвала.

Увеличение объема, безусловно, приведет к повышению эффективности, но это неизбежно повлечет за собой повышенный расход горючего. Повышение оборотов коленчатого вала не всегда возможно по техническим причинам, к тому же, не избежать снижения эффективности из-за потерь энергии во время каждого из тактов.

Как работает турбонаддув? Он нагнетает в цилиндр предварительно сжатый воздух, вследствие чего количество поступаемого воздуха повышается, а мощность силового агрегата растет без увеличения его объема.

Когда бензиновый двигатель запускается, газы поступают в турбину, приводя с помощью своей энергии в движение ротор, раскручивающий колесо компрессора, захватывающее воздух, подаваемый в цилиндры. Компрессор увеличивает давление воздуха примерно на 80%.

Турбина на бензиновом двигателе позволяет повысить мощность примерно на 30%.

Эксплуатация турбины

Устройство турбокомпрессора делает его зависимым от качества масла, поэтому пытаться сэкономить на нем не стоит. Несвоевременно поменянное масло может стать причиной нарушений в работе механизма.

Автомобиль, оснащенный турбиной, нуждается после покупки в замене масла и тщательной прочистке топливной системы, при этом смешивать разные масла нельзя.

После продолжительной поездки сразу глушить двигатель не рекомендуется, дав ему немного поработать и охладиться. Резкое выключение может сказать на снижении прочности элементов конструкции, вызванном перепадом температуры.

Турбированный мотор: достоинства и недостатки

Популярность турбодвигателей вызвана их преимуществами перед обычными, заключающимися в:

  • увеличении мощности до 30% и уменьшении расхода топлива (турбомотор будет потреблять меньше горючего, нежели ДВС аналогичной мощности, но без турбины);
  • уменьшении загрязнения окружающей среды;
  • лучшем соотношении веса агрегата к развиваемой мощности;
  • более тихой работе механизма;
  • возможности оптимизировать другие параметры двигателя.

Однако есть и свои минусы:

  • требовательность к качеству масла и бензина, что в конечном итоге повышает расходы на эксплуатацию авто;
  • сложный ремонт, требующий применения специального оборудования, выполнить который своими силами маловероятно. Нередко турбина и вовсе оказывается непригодной к ремонту, а её полная замена заметно ударяет по кошельку автовладельца.

Принцип работы турбины: видео

Источник: https://moj-vnedorozhnik.ru/v-pomoshch-voditelyu/princip-raboty-turbiny-na-benzinovom-dvigatele

Турбонаддув: что это такое, зачем нужен, как устроен и как работает турбонагнетатель

Турбонаддув представляет собой разновидность наддува, позволяющий подавать воздух в цилиндры ДВС под высоким давлением, которое обеспечивается высвобождаемой от сгорания топлива энергией выхлопных газов.

За счет турбонаддува повышается рабочая мощность двигателя, при этом не увеличивается внутренние объемы цилиндров двигателя и количество оборотов, совершаемых коленвалом. Кроме всего прочего турбонаддув позволяет снизить прожорливость двигателя, а также уменьшить токсичность газов благодаря более эффективному сгоранию топливовоздушной смеси.

Турбонаддув довольно широко используется на ДВС, работающих как на бензине так и на дизтопливе. При этом использование системы турбонаддува на дизелях считается более выгодным благодаря высокому показателю сжатия ДВС и малой частоте оборотов коленвала.

В бензиновых двигателях высока вероятность возникновения детонирующего эффекта вследствие значительного увеличения количества оборотов двигателя и высокого температурного режима газов при сгорании топлива (до 1000 °C, у дизеля лишь 600 °C).

Устройство системы турбонаддува

Система турбонаддува состоит из следующих элементов:

  • воздушный заборник и фильтр;
  • дроссельная заслонка;
  • турбинный компрессор;
  • интеркулер;
  • коллектор впускной;
  • соединительные патрубки;
  • напорные шланги

Турбинный компрессор (нагнетатель)

Основной элемент устройства турбонаддува, который предназначен для увеличения рабочего давления воздушной массы в системе впуска. Турбокомпрессор состоит из турбинного и компрессорного колес, которые установлены на роторном валу. Все элементы турбокомпрессора находятся в специальных защитных корпусах.

Турбинное колесо используется для переработки энергии, выделяемой отработанными газами. Колесо и его корпус изготавливаются из высокопрочных и жароустойчивых материалов – стальных и керамических сплавов.

Компрессорное кольцо применяется для всасывания воздушной массы, с дальнейшим ее сжатием и нагнетанием в цилиндры ДВС.

Кольца турбокомпрессора установлены на роторном валу, который совершает вращательные движения в плавающих подшипниках. Для более эффективной работы подшипники постоянно смазываются маслом, которое поступает по канальцам, расположенным в подшипниковом корпусе.

Интеркулер

Интеркулер – воздушный или жидкостной радиатор, который применяется для своевременного охлаждения предварительно сжатого воздуха, вследствие чего происходит увеличивается давление и плотность воздушного потока.

Регулятор давления наддува

Ключевым элементом управления турбонаддувом является регулятор давления наддува, который по сути своей является перепускным клапаном. Основным назначением клапана является сдерживание и перенаправление части вырабатываемых газов в обход турбинного колеса для снижения давления наддува. 

Перепускной клапан может быть оснащен приводом электрического или пневматического типа. Активация клапана происходит вследствие приема сигналов от датчика давления.

Предохранительный клапан

Клапан предохранительный используется для предотвращения скачков давления воздушной массы, которое часто возникает при быстром закрытии дроссельной заслонки. Избыточное давление либо стравливается в атмосферу, либо переподается на вход компрессора.

Принцип действия турбонаддува

Система турбонаддува использует энергию газов, которые образуются при сгорании топлива. Газы обеспечивают вращательные движения колеса турбинного типа, которое в свою очередь запускает компрессорное колесо, отвечающее за сжатие и нагнетание воздушной массы в систему. Далее происходит охлаждение воздуха при помощи интеркулера и подача его в цилиндры.

Очевидно, что хотя турбонаддув механически никак не связан с коленвалом двигателя, однако его работа и ее эффективность находится в прямой зависимости от скорости вращения коленчатого вала. Чем выше обороты двигателя, тем эффективнее работает турбонаддув.

Несмотря на свою практичность и эффективность, система турбонаддува имеет некоторые недостатки. Ключевым из них является появление турбоям – задержка в увеличении мощности ДВС.

Подобное явление проявляется вследствие инерционности системы – задержки в увеличении давления наддува при достаточно резком нажатии на газ, что может привести к разрыву между требуемой мощностью двигателя и производительностью турбины.

Для устранения эффекта турбоямы используются три основных метода:

  • Использование системы с двумя (и более) турбокомпрессорами. Турбины могут устанавливаться параллельно – это допускается на двигателях V-образного типа. При этом каждая турбина устанавливается на свой ряд цилиндров. Идея данного метода в том, что две турбины меньшего размера обладают более низкой инерционностью, чем одна большая турбина. Турбины так же могут устанавливаться и последовательно, причем их может быть от двух до четырех (Bugatti). Увеличение производительности и максимальная эффективность турбонаддува в этом случае достигаются за счет того, что при разных оборотах двигателя используется свой турбокомпрессор.
  • Использование турбины с изменяемой геометрией. Подобный метод обеспечивает более рациональное использование энергии отработанных газов за счет изменения площади сечения входного канала турбины. Данный метод весьма часто используется на дизельных двигателях, например всем известная система TDI от Volkswagen.
  • Использование комбинированного типа турбонаддува. Данный метод позволяет применять симбиоз двух систем – механического и турбинного наддува. Механический наддув эффективен на малых оборотах коленвала, при которых сжатие воздуха обеспечивается нагнетателем механического типа. Турбонаддув применяется при высоких оборотах коленвала, где функцию нагнетания воздуха берет на себя турбинный компрессор. Наиболее распространенной системой комбинированного наддува является наддув двигателя TSI от Volkswagen.

Источник: https://autodromo.ru/articles/turbonadduv-chto-eto-takoe-zachem-nuzhen-kak-ustroen-i-kak-rabotaet-turbonagnetatel

Понравилась статья? Поделиться с друзьями:
Автолайф
Как по другому называется датчик коленвала

Закрыть