Кто придумал турбину на двигатель

История автомобильной турбины — от изобретений Бючи до современности

Кто придумал турбину на двигатель

История автомобильной турбины – это история изобретения, почти такого же старого, как двигатель внутреннего сгорания и сам автомобиль. Давайте пройдемся по ретроспективе и проследим этапы жизни одного из самых известных, увлекательных и полезных изобретений в автомобильной сфере, которое после более чем 100 лет концептуально не изменилось. В статье будут раскрыты следующие тезисы:

Первые турбины Бючи

Турбина с наддувом (современный вариант турбокомпрессора) был изобретен швейцарским инженером Альфредом Дж. Бючи, который работал над паровыми турбинами.

В 1905 году Бючи ​​подал патент на первую концепцию турбокомпрессора с приводом для отработанных газов – в механизме турбина и компрессор были механически связаны.

Первые турбокомпрессоры были разработаны Бючи между 1909 и 1912 годами в исследовательском отделе Sulzer Brothers, специализированном экспериментальном центре города Винтертур, Швейцария.

Альфред Бючи

В 1910 году был сконструирован первый двигатель с турбонаддувом: это был двухтактный двигатель компании Murray-Willat, производителя двигателей для самолетов, принявшего опыт инновационного изобретения инженера Бючи. Однако первый самолет, который начал летать в небе во время I мировой войны и приводимый в движение двигателями внутреннего сгорания, испытал значительное падение мощности на большой высоте из-за уменьшения плотности всасываемого воздуха, ограничивающего высоту полета.

Турбокомпрессор Бючи компенсировал разрежение воздуха, и, казалось, имел место для зарождающейся авиационной промышленности. В 1918 году специалист Сэнфорд Мосс из General Electric применил турбокомпрессор к двигателю для самолета «V12 Liberty» и проверил его в городе Пайкс-Пик, штат Колорадо, на высоте около 4600 м. С турбонаддувом мощность двигателя возросла до 377 лошадиных сил.

Срок службы первого дизельного двигателя с турбонаддувом был дольше: только в 1915 году Бючи ​​сделал первый прототип, но он оказался недостаточно эффективным для поддержания адекватного давления наддува.

Несмотря на некоторые ложные шаги и неуверенность в отношении этого нововведения, в области аэронавигации всё же были побиты рекорды высоты (до 1000 м). В 1925 году успешно применено на двух немецких судах дизельный двигатель с наддувом, который развил мощность 2000 лошадиных сил.

В результате, многие инженерные компании Европы, США и Японии приобрели лицензию Бючи.

В 1930-х годах турбокомпрессоры с осевыми турбинами использовались в кораблях, железнодорожных вагонах и многих стационарных установках. В 1936 году Дж. К. Гарретт основал корпорацию Garrett, которая в ближайшие годы станет одним из крупнейших и наиболее важных производителей турбокомпрессоров.

Схема турбины с наддувом

Во время II Мировой Войны скоростные реактивные самолеты вытеснили самолеты с поршневыми двигателями: появление газовых турбин принесло большие достижения в технологии материалов и дизайна, что имело положительные последствия и в области турбин.

Новые материалы, более устойчивые к высоким температурам выхлопных газов, и новые технологии обработки позволили разработать радиальные турбины, меньшие и легче, чем осевые, которые лучше подходили для двигателей небольших автомобилей.

Именно тогда турбокомпрессор спустился с неба, чтобы покорить землю.

История автомобильной турбины

Начиная с 1950-х годов, крупные производители двигателей, такие как Volvo, Scania и Cummins, начали экспериментировать с двигателями с турбонаддувом для грузовых автомобилей, поставляемых Elliot и Eberspächer. Но эти ранние проекты были неудачными. Немецкий инженер Курт Бейрер разработал новый, более компактный дизайн, который впоследствии был принят корпорацией Schwitzer. Таким образом, в 1954 году и Cummins, и Volvo смогли предложить широкий ассортимент турбодизельных двигателей.

Как часто случается в автомобильном мире, стартовое применение нового устройства случилось на соревновании. В 1952 году первый автомобиль, оснащенный дизельным двигателем с турбонаддувом от компании Cummins, появился на гонке Indianapolis 500. Машина оставалась во главе гонки первые 160 км, пока кусок шины не повредил турбокомпрессор.

Переход турбокомпрессора с гоночных трасс на дорогу состоится только в 1962 году в США благодаря двум автомобилям группы General Motors – Oldsmobile «Jetfire» и Chevrolet «Corvair Monza». «Jetfire» был оснащен алюминиевым двигателем V8 (8 цилиндров) мощностью 3,5 и 215 л.с., а «Corvair Monza» плоским 6-цилиндровым двигателем мощностью от 2,7 до 150 л.с.

Автомобиль Jetfire от General Motors

Jetfire, чтобы ограничить явление детонации – основного технического ограничения двигателей с наддувом со степенью сжатия 10,25:1, был оснащен необычной системой впрыска смеси воды и метилового спирта, содержащейся во вспомогательном баке.

Смесь впрыскивалась во впускные каналы в моменты, когда требовалось больше энергии – в зависимости от стиля вождения литр жидкости мог преодолевать расстояние от 360 до 3200 км.

Машине Corvair, с задним двигателем с воздушным охлаждением, повезло гораздо больше, она оставалась на рынке пять лет, продано 50 000 автомобилей.

Автомобиль Chevrolet Convair Monza

Турбины вновь появились на серийных автомобилях в 70-х годах, но уже в Европе. Возрождение было проведено компанией BMW со знаменитым «2002» 1973 года (170 л.с. и 2 л), а затем Porsche с 1974 годом «911 Turbo» (260 л.с. 3 л). США, несмотря на первоначальные неудачи, вернулись к турбинам с автомобилем «Regal» Buick 1978 года. А вот первый дизельный двигатель с турбокомпрессором появился в Европе благодаря Peugeot «604» (выпускался в 1975-1985 гг.).

Peugeot 604 1978 года

Главной компанией Европы, которую действительно «беспокоил» автомобильный мир, была Renault. В 1977 году она открыла на чемпионате мира Формулы 1 то, что вошло бы в спортивную историю как «Турбо Эра». Вскоре за французским автогигантом последовали Honda, Ferrari, BMW, которые испытали шестицилиндровыми двигатели объемом 1,5 л с мощностью до 1500 л.с.

Ралли-машины также экспериментировали с «турбо-эффектом». Первой была Audi «Quattro Sport», а затем Lancia «Delta S4» (первый автомобиль в мире, который использовал двойную систему турбокомпрессора с объемным компрессором Volumex и турбокомпрессор KKK), Peugeot «205 T16» и многие другие. Их 2-литровые 4-цилиндровые двигатели были способны превышать мощность 600 л.с.

Совокупная эскалация сил, как на трассе, так и на дороге, не осталась незамеченной, в том числе из-за негативных последствий в вопросах безопасности. Управление авто с мощными двигателями без современных электронных средств может выйти за пределы возможностей лучших пилотов, поэтому различные федерации были вынуждены делать ставки.

В «Формуле 1» сначала устанавливают ограничение на максимальное давление наддува, а с 1989 года полностью отказываются от турбодвигателей. В «Ралли» турбодвигатели по-прежнему присутствуют в высшей категории, но должны принять ограничение на потребление воздуха в турбонагнетателе, в результате чего мощность фактически снижается до 300 л.

с.

В 1997 году, благодаря автомобилю Alfa «156», турбонаддув будет соединяться с дизельным двигателем.

Alfa Romeo 156 — 1999 года

Усовершенствование турбин в наши дни

Несмотря на то, что прошло более ста лет со дня изобретения, турбокомпрессор все еще является предметом серьезных усовершенствований. Техническое вмешательство сконцентрировано, прежде всего, на лопатках турбины и компрессора, которые представляют собой сердце этого устройства. Их правильная конструкция имеет основополагающее значение для хорошей работы турбокомпрессора.

Если внедрение мобильных лопаток для компрессора является реальностью, консолидированной годами (проще говоря «турбонагнетатель с изменяемой геометрией»), гораздо более свежим и сложным является внедрение этого решения на стороне турбины. Критичность заключается в том, что лопасти турбины поражены высокотемпературным выхлопным газом (около 1000°C). Первой машиной, которая приняла турбину с изменяемой геометрией, была Porsche с «911 Turbo» 2005 года.

Усовершенствованный Porche Turbo 911 (Turbo S) 2018 года

Помимо этих изощрений, турбокомпрессор возвращает моду на бензиновые двигатели. Благодаря этому можно использовать небольшие (и, следовательно, легкие) двигатели на широком диапазоне автомобилей, имея возможность рассчитывать на достаточный запас оборотов и мощности. Таким образом, производительность, удовольствие от вождения и экономичность, являются основными преимуществами современной автомобильной турбины.

Источник: https://turbi.com.ua/istorija-avtomobilnoj-turbiny/

История изобретения турбин

Кто придумал турбину на двигатель

Турбиной называют вращающееся устройство, которое приводится в действие потоком жидкости или газа.

Самый простой пример турбины – водяное колесо.

Представим себе вертикально поставленное колесо, на ободе которого закреплены черпаки или лопасти. На эти лопасти сверху льётся поток воды. Под действием воды колесо вращается. А вращением колеса можно приводить в действие другие механизмы. Так, в водяной мельнице колесо вращало жернова.

А они мололи муку. На гидроэлектростанциях турбины вращают генераторы, которые вырабатывают электрическую энергию. На тепловых электростанциях лопасти турбин приводятся в движение тепловой энергией, которая освобождается при сжигании топлива (газа, угля и т.п.).

Ветровые генераторы заставляет вращаться энергия ветра.

С точки зрения физики турбины – это устройства, которые преобразовывают энергию пара, ветра, воды в полезную работу.

В зависимости от того, какой вид энергии преобразуется в турбинах, различают паровые турбины и газовые.

Паровая турбина

Эолипил Герона

В паровой турбине тепловая энергия пара преобразовывается в  механическую работу.

Ещё в 130 г. до нашей эры греческий математик и механик Герон Александрийский изобрёл примитивную паровую турбину, которую назвали «эолипил». Прибор представлял собой наглухо запаянный котёл, из которого были выведены две трубки.

На эти трубки установили полый шар с двумя соплами Г-образной формы. В котёл заливалась вода, и он ставился на огонь. Пар поступал по трубкам в шар и под давлением вырывался из сопел. Шар начинал вращаться.

Это был прообраз реактивного двигателя, в котором реактивная сила, которая вращала шар, создавалась паром.

Во времена Герона к его изобретению отнеслись, как к игрушке. Практического применения оно не нашло.

В 1629 г. итальянский инженер и архитектор Джованни Бранки создал паровую турбину, в которой колесо с лопатками приводилось в движение струёй пара.

Английский инженер Ричард Трейсвик в 1815 г. на ободе паровозного колеса установил два сопла и пустил по ним пар.

С 1864 г. по 1884 г. инженерами были запатентованы сотни изобретений, относящихся к турбинам.

И только в 1889г. шведский инженер Густаф Лаваль создал паровую турбину, которую можно было использовать в промышленности. В турбине Лаваля струя пара, выходящая из сопел неподвижного статора, давила на лопатки, закреплённые на ободе колеса. Колесо под давлением пара вращалось. Такая турбина называлась активной.

В турбине Лаваля сопло расширялось на выходе. Это увеличивало скорость выходящего пара и, как следствие скорость вращения турбины. Сопло Лаваля стало прообразом современных ракетных сопел.

Немного раньше, независимо от Лаваля, в 1884 г. английский инженер и промышленник Чарлз Алджернон Парсонс изобрёл многоступенчатую реактивную паровую турбину. В такой турбине имелось несколько рядов рабочих лопаток, которые назывались ступенями. Парсон запатентовал идею корабля, который приводился в действие этой турбиной.

Газовая турбина

Джон Барбер

Газовая турбина отличается от паровой тем, что в движение её приводит не пар из котла, а газ, который образуется при сгорании топлива. А все основные принципы устройства паровых и газовых турбин одинаковы.

Первый патент на газовую турбину был получен в 1791 г. англичанином Джоном Барбером. Барбер разработал свою турбину для движения безлошадной повозки. А элементы турбины Барбера присутствуют в современных газовых турбинах.

В 1903 г. норвежец Эджидиус Эллинг изобрёл газовую турбину, производящую больше энергии, чем затрачивалось на её работу. Принцип её работы был использован английским инженером-конструктором сэром Фрэнком Уиттлом, который в 1930 г. запатентовал газовую турбину для реактивного движения.

Турбина Тесла

Турбина Тесла

В 1913 г. инженер, физик и изобретатель Никола Тесла запатентовал турбину, устройство которой принципиально отличалось от устройства традиционной турбины. В турбине Тесла не было лопастей, которые приводились в движение энергией пара или газа.

Вращающаяся часть турбины — ротор, представляла собой набор тонких металлических дисков, закреплённых на валу и разделённых шайбами. Поток газа или рабочей жидкости поступал с внешнего края дисков и проходил к центру по зазорам, закручиваясь. Известно, что если поток жидкости или газа направить по плоской поверхности, то поток начинает увлекать за собой эту поверхность. Диски в турбине Паскаля увлекались потоком газа, вызывая вращение.

Источник: http://www.phisiki.com/2012-02-28-10-51-54/75-istoriya-isobreteniya-turbin

История первого в мире турбореактивного самолета, который полетел — Технологии Onliner

Кто придумал турбину на двигатель

В любом деле есть первопроходцы: то, что сегодня полностью привычно, когда-то было в новинку.

Наверное, мало кто сможет вспомнить полет на самолете, из иллюминаторов которого был виден воздушный винт (тем не менее в Европе региональные авиалинии нередко используют турбовинтовые летательные аппараты).

Турбореактивные двигатели сегодня правят миром — ничего лучше, видимо, на данный момент не придумали, и водородные да атомные самолеты пока не летают. С момента же появления первого эффективного мотора подобного типа прошло почти 80 лет.

За воплощением идеи стоит немецкий инженер Эрнст Хейнкель, а вот кому она принадлежит — другой вопрос. Как нередко бывает, идея была продумана другим человеком (который в итоге остался в тени), затем благодаря деньгам и ресурсам крупного бизнеса ее удалось воплотить в жизнь.

Инженер Эрнст Хейнкель

Хейнкель родился в Германии в январе 1888 года. В юные годы он не имел никакого отношения к авиации, которая тогда делала только первые серьезные шаги. Немец увлеченно изучал машиностроение в Штутгарте, работал учеником токаря на литейном производстве и следил за развитием цеппелинов.

Особенное влияние на профессиональное будущее Эрнста оказала катастрофа с одним из этих летательных аппаратов в 1908 году. Тогда экспериментальный LZ 4, уже участвовавший в серии испытательных полетов, был уничтожен пожаром во время посадки для починки сломанного двигателя.

«Будущее — за самолетами», — решил для себя Хейнкель.

К 1911 году Эрнст, которому на тот момент было 23 года, построил свой первый самолет. Как показал пробный полет, инженерные навыки требовали дальнейшего совершенствования — молодой человек получил травмы и долго отходил от них.

Кто-то сдался бы, но та эпоха запомнилась увлеченными людьми. Вернее, история помнит лишь о таких. Начиная с 1914 года немец трудился в крупных самолетостроительных компаниях, занимался конструированием летательных аппаратов.

Иногда ему приписывают разработку популярного биплана Albatros B.II, однако многие историки опровергают эту информацию.

Вскоре после окончания Первой мировой войны, в 1921 году, Хейнкель занимает пост главного конструктора компании Caspar-Werke, реорганизованной после длительной паузы. Однако очень скоро инженер покидает ее из-за споров с основателем фирмы Карлом Каспаром относительно прав на дизайн выпускаемых самолетов. Наверняка Эрнст высоко ценил собственный опыт и профессионализм, поэтому в 1922-м появляется компания Heinkel-Flugzeugwerke.

Фирма искала способы обойти Версальский договор, который накладывал на Германию серьезные ограничения в плане производства техники. В определенный момент серьезную поддержку Хейнкелю оказало японское правительство.

Дело в том, что Япония одновременно являлась крупным заказчиком Heinkel-Flugzeugwerke и входила в специальную комиссию, которая проверяла, соблюдает ли компания договоренности, закрепленные в Версальском договоре.

Утверждается, что это позволяло Эрнсту заранее готовиться к грядущим инспекциям, а затем как ни в чем не бывало продолжать работу (японцы загодя предупреждали о мероприятиях).

В 30-е годы компания Хейнкеля была уже не «одной из», а причислялась к лидерам индустрии. Фирма закономерно привлекла внимание рейхсканцлера, который вскоре узурпировал власть. «В 1933 году я вступил в партию, но никогда не был нацистом», — так написал много позже Эрнст. Кстати, в 1948-м он был арестован за сотрудничество с нацистским режимом, но затем оправдан благодаря связям с заговорщиками, планировавшими свержение Гитлера.

Heinkel He 178

Компания Heinkel-Flugzeugwerke активно занималась инвестициями в разработку и исследование двигателей нового типа.

Поэтому когда к Хейнкелю пришел молодой инженер Ханс фон Охайн, глава предприятия с радостью воспользовался запатентованной этим человеком технологией (фон Охайн зарегистрировал реактивный мотор в 1935 году).

Стоит отметить, что незадолго до этого, независимо от Ханса, патент на турбореактивный двигатель получил сэр Фрэнк Уиттл, однако британский самолет взлетел позже — поддержку со стороны правительства он получил после того, как стало известно об успешных испытаниях He 178.

Фон Охайн посетил Хейнкеля с предложением построить работоспособный летательный аппарат, используя его двигатель. Реализация проекта заняла несколько лет, так как было принято решение усовершенствовать конструкцию, сделав систему более мощной и эффективной.

К созданию первого в мире действующего турбореактивного самолета приложили руку Генрих Гертель, Карл Шверцлер и Зигфрид Гюнтер. Последний после Второй мировой войны принимал участие в разработке советского истребителя МиГ-15. Работа над He 178 велась без государственной поддержки, на создание концепта и прототипов были направлены собственные средства компании.

ЭТО ИНТЕРЕСНО:  Что включает в себя подвеска автомобиля

Первый полет

Первую попытку взлета He 178 предпринял 24 августа 1939 года. Вернее, это был пробный «прыжок» над полосой. А спустя несколько дней, 27 августа, капитан Эрих Варзиц совершил полноценный полет (пару месяцев до этого он поднял в воздух реактивный He 176).

Согласно доступным данным максимальная скорость самолета с металлическим фюзеляжем и деревянными крыльями, на борту которого находился один-единственный пилот, составляла чуть менее 500 км/ч (по другой информации — около 600 км/ч), дальность полета достигала 200 км.

Первый самостоятельный полет завершился без лишнего пафоса и крутых виражей. Все испортила птица, попавшая в двигатель: произошел срыв пламени, однако Варзиц смог безопасно посадить машину. Самолет также продемонстрировали представителям Министерства авиации. Полет длился всего 10 минут, и брать на вооружение He 178 в том состоянии было бессмысленно. Так посчитали в специальной комиссии.

Вероятно, на решение не поддерживать проект Хейнкеля повлияла разработка двигателей BMW 003 и Junkers Jumo 004 с господдержкой. Дополнительный груз виделся лишним, а начавшаяся война должна была скоро завершиться (бытовало такое мнение). Инженер все же решил продолжить работу, что привело к появлению первого в мире истребителя с турбореактивным мотором — He 280.

Компания Heinkel-Flugzeugwerke продолжала разработку двигателей, в которых, в общем-то, и заключалась перспективность самолетов подобного типа. 30 марта 1941 года He 280 совершил дебютный полет, но вновь не смог удовлетворить запросы комиссии.

Не помогло и то, что он использовал керосин, а не сжигал высокооктановое топливо, как «классические» летательные средства. Хейнкель раз за разом предпринимал попытки доказать превосходство своих разработок над самолетами конкурентов. В гонках на скорость He 280 превзошел Focke-Wulf Fw 190, но тщетно.

Лишь в 1942 году после показательного боя между этими двумя самолетами в Министерстве авиации признали перспективность He 280 — он оказался более маневренным и быстрым.

В итоге Heinkel-Flugzeugwerke получила заказ на 20 тестовых экземпляров и 300 серийных образцов He 280. Однако Эрнсту предстояло решить проблемы с двигателями HeS 8, на замену которым пришли более продвинутые, но сложные HeS 011. Это негативно сказалось на выполнении заказа, и инженер был вынужден использовать навязанные ему Junkers Jumo 004. Тяжелые и огромные моторы свели на нет все положительные стороны He 280.

В итоге победителем в этой конкурентной борьбе вышел реактивный Messerschmitt Me 262, тогда как самолетов Хейнкеля было выпущено всего девять экземпляров. Он проиграл. И примерно в это же время его собственность была национализирована. На деле это значит, что инженера задержали и потребовали передать контроль за предприятием признанному впоследствии военным преступником Герману Герингу.

После этого Эрнст отправился в Вену, где основал новую компанию.

Через некоторое время, участвуя в конкурсе фашистской Германии Jägernotprogramm, Хейнкель представил свой «истребитель мечты» — He 162 Salamander.

Сегодня подобную программу назвали бы «конкурсом прототипов» — мало кто из участников смог пройти дальше стадии проектирования. Представленные же самолеты — сплошной ретрофутуризм по нынешним меркам.

Детище Эрнста выглядело под стать им, но один из прототипов смог разогнаться до невероятных 900 км/ч. Это могло бы сделать его самым быстрым самолетом Второй мировой войны

В начале 50-х годов прошлого века Эрнст Хейнкель основал новую компанию, которая занялась выпуском велосипедов, мопедов и мотоколясок, — самолетостроение в Германии на некоторое время оказалось под запретом. В 1955-м ограничения ослабли, и фирма наладила сборку самолетов по заказам из-за рубежа (в том числе одной из модификаций Lockheed F-104 Starfighter для США). Умер создатель первого в мире турбореактивного самолета в 1958 году.

Краткий список источников: World War II Database, Aerospaceweb.org, EDN, Scientists and Friends, Encyclopædia Britannica, Military Factory, The Aviation History On-Line Museum, 456th Fighter Squadron, Wikipedia.

Радиоуправляемые авиамодели в каталоге Onliner.by

Источник: https://tech.onliner.by/2018/01/13/turbo-jet

Кто придумал турбину? История создания турбокомпрессора

Двигателестроители, начиная с Отто и Дизеля, всегда мечтали о максимально возможном наполнении цилиндров воздухом. Но двигатель должен был бы сам себя «надувать» сжатым воздухом, чтобы не было лишних затрат энергии. Чем больше в цилиндрах воздуха, тем больше энергии, что в итоге выливается в значительном приросте мощности и крутящего момента.

Естественно изобретатели ухватились за идею использовать энергию выхлопных газов для нагнетания воздуха. Хотя все это звучит просто, но прошло много лет до того как эту идею смогли реализовать — турбокомпрессоры появились спустя сто лет после изобретения двигателя внутреннего сгорания.

Первым кто описал и запатентовал принцип работы турбокомпрессора был Альфред Бюхли в 1905 году. Инженеры никогда не сталкивались с нехваткой воздуха, ведь даже совсем небольшой компрессор может передать большое количество воздуха. Проблема была в другом, а именно в том, как контролировать давление наддува между переключениями передач. Первоначально турбокомпрессоры устанавливались на самолеты и корабли. На этих транспортных средствах обороты двигателя изменяются плавно.

Затем стали устанавливать турбокомпрессоры на дизельные двигатели. В 50 годы нашего столетия стали устанавливать турбины на гоночные автомобили, где скорость была примерно постоянна. В те же годы инженеры General Motors оснастили турбодвигателями и серийные модели, но тут же обнаружились «подводные камни». При разгоне с малых оборотов компрессор реагировал очень медленно. Это я вление назвали «Турболагом» или «Турбоямой».

На больших оборотах турбонагнетатели давали слишком большое давление.

К концу 60-х годов инженер из Швейцарии Михаэль Мэй выдвинул идею, о том, что турбокомпрессоры нужно делать маленьких размеров, тогда они будут подавать меньшее количество воздуха с одной стороны, а с другой стороны маленький агрегат имел малый вес, и поэтому обладал меньшей инертностью и быстрее реагировал на изменение скорости.

В это же время фирма Porsche тоже заинтересовалась идеей турбокомпрессора. Они совместно с фирмой ККК в начале 70-х годов и положили начало эры турбокомпрессоров в автомобилестроении. В турбодвигателях при нажатии на педаль акселератора давление должно было резко возрастать, а при отпускании педели — резко падать.

Поступили следующем образом: когда давление становилось большим выхлопные газы перепускались мимо турбины. Когда дроссельная заслонка закрывается, стравливаются выхлопные газы. При этом крыльчатка турбокомпрессора еще вращается, но не в полную силу.

Когда же давление наддува снова будет необходимо, перепускной клапан закрывается, и турбина быстрее раскручивается.

Было еще много других проблем, например температура в турбокомпрессорах бензинового двигателя достигает 1000 градусов, но все эти проблемы были решены, и в наше время турбокомпрессоры честно служат на пользу человечества.

Есть ли тот кто ни когда не слышал волшебное слово «турбо»? Звенит в ушах, воображение рисует нечто мощное, стремительное. На этом фоне как-то скучно звучат термины «механический компрессор» или, хуже того — «объемный нагнетатель». На деле — совсем не так.

Какой водитель не мечтал о том что бы в его автомобиле жило намного больше лошадок под капотом чем есть.. Благо последнее время данную проблему довольно легко решить, вариантов увеличения мощности двигателя, да и комплектующих полно. В нашу жизнь плотно вошло слово «тюнинг» и многие тюнинговых ателье берутся сделать с вашим любимцем все, что угодно.

В русский язык с давних пор вошел термин «форсировка» (от английского force — сила), который означает «увеличение мощности». Стоит вспомнить, что мощность двигателя напрямую связана со следующими его основными параметрами:

  • рабочим объемом цилиндров;
  • количеством подаваемой топливо-воздушной смеси;
  • эффективностью ее сжигания;
  • энергетической «заряженностью» топлива.

Стоит заметить, что есть ещё несколько вариантов увеличения мощности — полировка впускного/выпускного каналов, применение фильтров нулегого сопротивления, применение прямоточной системы выхлопа, модификация параметров программного обеспечения (чип-тюнинг), расточка цилиндров или переходе с бензина на «нитру» (закись азота).

Такие решения позволяют увеличить мощность, но не существенно, разве что это не касается «нитроса». Главное решение одно — увеличение подачи топливо-воздушной смеси. Чем больше топлива сжигается в единицу времени, тем выше мощность мотора. Но бензин не горит «просто так», для этого нужен воздух (кислород) — во вполне определенных количествах.

Чтобы увеличить подачу топлива, вначале придется соответствующим образом усилить подачу воздуха. Сам мотор с этой задачей не справится — его вероятности по всасыванию воздуха ограничены (даже при применении фильтров с нулевым сопротивлением). Поэтому и появились те самые «турбо», «компрессоры» и «нагнетатели».

Они разные, и дают разнообразные результаты.

Для начала немного турбо-теории:

Представим себе такт впуска двигателя внутреннего сгорания: мотор работает как насос, к тому же весьма неэффективный — на пути воздуха (горючей смеси) находится воздушный фильтр, извилины впускных каналов, в бензиновых моторах — еще и дроссельная заслонка.

Все это снижает наполнение цилиндра. Что же сделать, чтобы его повысить? Поднять давление перед впускным клапаном — тогда горючей смеси (для дизелей — воздуха) в цилиндре будет больше.

Энергия сгорания заряда с большим количеством топлива, само собой, повысится; вырастет и общая мощность двигателя.

Для этих целей существует много решений, но распространение получили не многие.

1. Роторный нагнетатель Roots. Создан Фрэнсисом Рутсом еще в 1860 году. Первоначально применялся как вентилятор для проветривания промышленных помещений. Суть : две вращающиеся в противоположных направлениях прямозубые «шестерни», помещенные в общий кожух (напоминает современный маслонасос).

Объемы воздуха в пространстве между зубьями шестерен и внутренней стенкой корпуса благополучно доставляются от впускного коллектора до выпускного. В 1949 году другой американский изобретатель — Итон — усовершенствовал конструкцию: прямозубые «шестерни» превратились в косозубые роторы, и воздух теперь перемещался не поперек их осей вращения, а вдоль.

Принцип работы — воздух внутри агрегата не сжимается, а просто перекачивается в другой объем, отсюда и название — объемный нагнетатель, а не компрессор.

2. Спиральный компрессор Lysholm. Автор идеи — немецкий инженер Кригар, время рождения — конец позапрошлого века, первоначальное назначение — промышленное, сейчас известен под именем Lysholm благодаря работам шведского инженера Алфа Лизхолма, который в конце 30-х годов прошлого века приспособил конструкцию для автомобильного применения. Внешне — если не снимать кожух — очень похож на нагнетатель Roots.

Отличия внутри. Вроде бы те же два ротора, вертящиеся навстречу друг другу перекачивают объемы воздуха вдоль осей, но сильно лихо закручены. Сечения роторов намного сложнее, они разные. Самое главное: шаг закрутки роторов меняется по длине, и при перемещении вдоль осей объем перекачиваемого воздуха в каждой ячейке уменьшается — воздух сжимается.

Поэтому Lysholm — не просто нагнетатель, а чистой воды компрессор.

3. Центробежный компрессор (устоявшегося «фирменного» названия не имеет). В корпусе-улитке вращается крыльчатка сложной формы. Воздух затягивается по центру и отбрасывается по периферии, при этом благодаря действию центробежных сил происходит его сжатие. По этому это не просто нагнетатель, а тоже компрессор.

4. Турбокомпрессор, оно же турбонагнетатель. По сути, это тот же центробежный компрессор, но с другой схемой привода. Это самое важное, можно сказать, принципиальное отличие механических нагнетателей от «турбо», пусть даже и «би», и «твин». Именно схема привода в значительной мере определяет характеристики и области применения тех или иных конструкций.

У турбокомпрессора крыльчатка-нагнетатель находится на одном валу с крыльчаткой-турбиной, которая встроена в выпускной коллектор двигателя и приводится во вращение отработавшими газами. Прямой связи с коленвалом двигателя нет, и управление подачей воздуха осуществляется за счёт давления отработавших газов, так сказать, по второй производной.

Для данной конструкции присуща замедленная реакция на быстрый «подхват».

Механический нагнетатель/компрессор — роторный, спиральный или центробежный — имеет механический привод, который осуществляется ремнем от коленвала двигателя (иногда через промежуточные шкивы). Здесь главное, что бы обороты нагнетателя/компрессора жестко связаны с оборотами коленвала.

Нагнетатель Roots и компрессор Lysholm

Нагнетатель Roots, и компрессор Lysholm имеют линейные характеристики, обороты компрессора повышаются синхронно с оборотами коленчатого вала, пропорционально растет подача воздуха, и кривая крутящего момента двигателя, практически не меняя свою форму, размеренно перемещается вверх. У центробежного и турбокомпрессоров характеристики нелинейные — их производительность увеличивается с ростом числа оборотов. Поэтому установка того или иного агрегата по-разному меняет характеристики (кривые мощности и крутящего момента) двигателя.

Оба типа компрессоров весьма эффективны с самых низких оборотов, но Lysholm обеспечивает более плоскую характеристику на высших, у Roots ее спад начинается несколько раньше.

К преимуществам Lysholm можно отнести и более высокий КПД, и лучшее соотношение габариты/масса, к тому же он меньше нагревается при работе. Рабочая частота вращения обычно 12-14 тыс. оборотов, но может доходить до 25 тыс. об./мин.

(Стоит заметить что компания Mercedes- Benz одна из первых начала использовать компрессора в своих автомобилях, при чем предпочтение они отдали именно роторным конструкциям.)

Роторы Lysholm с их сложной формой требуют высочайшей точности изготовления — компрессоры этого типа появились на рынке заметно позже других. Главные их производители — шведские компании Lysholm и Autorotor. Известны потребителю фирмы Kleemann, Whipple и пр. в основном поставляют готовые комплекты на шведской основе, разработанные для конкретных двигателей. Комплекты включают интеркулер, систему привода, входной коллектор, переходники и разную мелочевку

Механический нагнетатель

Механические нагнетатели применялись в автомобильных двигателях еще в 30-е годы, тогда их чаще всего называли компрессорами. Сейчас этот термин обычно относят к турбокомпрессорам, о которых речь пойдет ниже. Конструкций механических нагнетателей довольно много, и интерес к ним разработчики проявляют до сих пор. На рисунках 1-4 представлены схемы некоторых устройств, принцип работы которых не требует дополнительных пояснений.

Источник: https://www.auto-truck.by/novosti/kto-pridumal-turbinu-istorija-sozdani/

Турбины — история изобретения, виды и устройство

В этом докладе раскроем тему устройства, принципа работы турбины и подготовим сообщение об истории изобретения турбин. Они применяются в энергетике, металлургии, во многих сферах промышленности, в том числе и ЖКХ. Что такое турбина и каков ее принцип действия рассказывается в учебнике «Физика» за 8 класс. Постараемся раскрыть данную тему подробнее.

Устройство и принцип работы турбины

Турбина (от латинского «turbo» в переводе на русский – смерч, круговое движение) – это двигатель, когда при вращающемся роторе энергия пара, воды и газа трансформируется в механическую работу. 

Когда водные или паровые потоки действуют на специальные звенья — лопасти, то эти они начинают двигаться. Лопасти расположены по всему диаметру ротора.

Рассмотрим пример водяного колеса, на нём закрепляются лопасти, а поверх течёт поток воды. 

Колесо под воздействием центробежной силы начинает вращаться.

Если направление потока воды, пара или газа идёт параллельно оси турбины – то их называют осевыми, а если перпендикулярно – то радиальные.

Используется в качестве части двигателя и увеличивает его мощность. Широко используется в транспортных средствах. На электростанциях является приводом электрогенератора.

Виды турбин

Типы определяются в зависимости оттого, какой вид энергии преобразуется в них – на основе пара или на основе газа:

  1. Паровая турбина – нагретый водяной пар расширяется и, поступая в проточную часть, заставляет вращательно работать ротор. Потоки пара воздействуют на лопасти, тем самым происходит движение. Такие турбины могут вырабатывать помимо электрической ещё и тепловую энергию.

  2. Газовая турбина – в ней сжатый и нагретый газ преобразовывается в механическую работу на валу. Состоит из лопастей, закрепляющихся на дисках (ротор), и направляющих лопастей, которые закрепляются в корпусе (статор).

Под давлением и воздействием высокой температуры, газ проходит по сопловому устройству в область низкого давления, в пути сильнее расширяется и ускоряется. После поток газа доходит на лопасти, отдаёт часть своей кинетической энергии. 

Лопасти передают крутящий момент через диски на вал. Газовая турбина вращает вал генератора, так и проявляется его КПД. Используются на ТЭЦ.

Краткий исторический обзор развития турбин

Попытки изобрести турбины предпринимались во все времена. Самые ранние результаты датируются первым столетием нашей эры, и представление о паровой турбине дошло до нашего времени.

Кратко рассмотрим этапы создания в хронологическом порядке.

130 год нашей эры – эта дата служит самым первым упоминанием изобретения паровой турбины, сохранилось тому документальное подтверждение. Грек Герон Александрийский, математик и механик, разработал и построил простейшую турбину и дал ей название «эолипил».

Эолипил выглядел так: полностью залатанный котёл, на поверхности которого торчали две трубки. На эти трубки был установлен пустотелый шар, а на нем два сопла в форме буквы «Г». В котёл наливалась вода, которую затем грели на огне. 

ЭТО ИНТЕРЕСНО:  Какой двигатель самый сбалансированный

Как только температура воды повышалась, появлялся пар, который проходил в шар по трубкам, под воздействием выбрасывался из сопел, и шар начинал вращение. Но в бытность Герона изобретение не снискало признания, так как практического применения эолипилу не нашлось, потому относились к нему как к игрушке.

1500 г. – итальянский ученый и изобретатель Леонардо да Винчи упоминал в своих работах приспособление, похожее на турбину. Посредством огня подогревался воздух, который вращал лопасти.

1551 г. – сириец Таги-аль-Дин из Дамаска в своём отчёте «Высокие методы воздушных машин» описал механизм турбины. Машина представляла собой следующее: закрытый котел из меди был наполнен водой и на огне доводился до кипения.

Струя пара из сопла подавалась на колесо, которое крутило вертел барбекю. В Германии в музее Института истории исламской науки находится копия этого аппарата.

1629 г. – инженер из Италии Джованни Бранк простроил прототип мельницы. Концепция была такова, что мощный поток заставлял вращать турбину.

1678 г. — фламандец Фердинанд Вербист изобрел подобие самоходного транспортного средства на основе паровой машины. Но доказательств тому не значится.

1791 г. – учёный из Англии Джон Барбер запатентовал настоящую газовую турбину. Она могла работать на нефти, угле и древесине.

1872 г. – Франц Столц из Венгрии изобрел первым турбинный двигатель на основе газа.

1890 г. – конструктор Густаф де Лаваль разработал сопло. Оно использовалось для подачи пара в турбину.

1894 г. – британец Чарльз Парсонс запатентовал концепцию парохода, который двигался с помощью турбины.

1895 г. – в Британии освещали бульвары Кембриджа, рабочие установили три генератора по 4 тонны, мощностью сотню киловатт.

1903 г. – скандинав Эджидиус Эллинг первым построил турбину на основе газа. Она вырабатывала энергии больше, чем необходимо было для неё самой, но этот факт остался без внимания.

1913 г. – инженером и изобретателем Николой Тесла была запатентована своя турбина. Она не была похожа на все предыдущие изобретения, в ней не было лопастей, а её принцип основывался на принципе пограничных слоёв.

1918 г. – американский бренд General Electric первый наладил собственное производство.

1920 г. – британский ученый Алан Гриффит поменял принцип прохождения потоков газа по аэродинамической плоскости.

1930 г. – британский ученый Фрэнк Уиттли изобрел реактивную газовую турбину. А весной 1937 г. прошли первые испытания.

1934 г. – Рауль Патерас Пескара из Аргентины стал создателем поршневого двигателя, который являлся источником энергии в газовой турбине.

1936 г. – группа немецких учёных М. Хан и Х. фон Охайн в одно время с британцем Фрэнком Уиттли разрабатывали двигатель на основе реактивной турбины.

Современный мир не может обойтись без применения турбин, а с каждым днём их роль всё больше растет. Эти устройства надежны, модернизируются и трудятся на благо населения земли, ведь наука не стоит на месте и возможны новые прорывы в истории развития турбостроения.

Источник: https://nauka.club/fizika/turbin%D1%83.html

7 главных минусов и 2 плюса турбомоторов

Атмосферный мотор засасывает воздух в цилиндры под действием разрежения, которое возникает, когда поршень движется к нижней мертвой точке. В большинстве случаев давление в цилиндре в конце хода впуска чуть ниже атмосферного. И вот с этим количеством воздуха и осуществляется рабочий цикл мотора.

Наддувный двигатель получает на входе в цилиндр воздух, сжатый компрессором до определенного давления, а потому его в цилиндр войдет больше, чем у мотора со свободным всасыванием.

Больше воздуха — больше кислорода, а значит, и топлива сгорит больше, и мощность при том же рабочем объеме поршневой части будет выше (или мотор компактнее при сохранении мощности).

Поскольку воздух в компрессоре подогревается, температуру перед подачей в цилиндр желательно снизить. Это делает специальный охладитель — интеркулер.

Компрессоры могут использоваться разных типов — и с приводом от коленвала, и волновые обменники давления, но наиболее распространен турбонаддув.

Последний способ использует энергию выхлопных газов для вращения центростремительной турбины, а сидящее на том же вале колесо центробежного компрессора обеспечивает сжатие воздуха перед подачей в цилиндры.

Наддувный двигатель потребляет сжатый в компрессоре и охлажденный в интеркулере воздух. И тот же мотор является источником газов с высокими температурой и давлением, которые вращают турбину.Наддувный двигатель потребляет сжатый в компрессоре и охлажденный в интеркулере воздух. И тот же мотор является источником газов с высокими температурой и давлением, которые вращают турбину.

Как видим, конструкция наддувного мотора сложнее, чем атмосферника. Отсюда и первый недостаток турбомоторов

1. Низкая надежность

Наддувные двигатели состоят из большего числа агрегатов, а надежность многокомпонентной системы всегда ниже, чем у более простой. Нагрузки на детали больше из-за большей литровой мощности. Да и конструкционные материалы в автомобильной промышленности используются преимущественно недорогие. Это же вам не аэрокосмическая отрасль

К примеру, у турбокомпрессора есть система регулирования давления наддува, которая порой может заедать и отказывать. У редакционного Volkswagen Golf уже дважды при пробеге 80 000 и 100 000 км полностью теряла подвижность тяга привода клапана перепуска газов мимо турбины.

2. Недостаточный ресурс

Все мы вздыхаем по моторам-миллионникам конца прошлого века. Сейчас ресурс мотора в 400 000 км считается огромным достижением, а в прошлом он был нормой. Турбодвигатели современных автомобилей до таких пробегов не доживают. Турбокомпрессоры на бензиновых моторах редко ходят больше 150 000 км, а начавшая «хандрить» турбина вскоре может погубить и поршневую часть. Ведь турбокомпрессор может «выхлебать» весь запас моторного масла — в поддоне и поршневой части ничего не останется.

А еще многие производители с целью сэкономить «апгрейдят» атмосферные моторы до турбонаддувных, не особо заморачиваясь усилением некоторых деталей. Соответственно, высокие нагрузки на поршневую часть при небольшом усилении конструкции приводят к снижению ресурса.

3. Необходимость более частого и высококвалифицированного обслуживания

Многие производители для своих моделей с турбомоторами снизили периодичность ТО с 15 000 до 10 000 км. Так поступили, к примеру, Geely и Haval.

Наддувный мотор сложнее в обслуживании и особенно в диагностике. У него гораздо больше количество дополнительных соединений в системе турбонаддува. Потерять герметичность могут: подвод и отвод воздуха, подвод и отвод отработанных газов, системы подачи масла под давлением и его слива, а также подачи охлаждающей жидкости. Все это требует дополнительного внимания и опыта у сервисмена во время ТО.

4. Дорогой ремонт

Ремонт наддувного мотора всегда обходится дороже. Даже если турбокомпрессор в ремонтной фирме и не трогали, то прайс на восстановление двигателя все равно выше. Просто потому, что разбирать-собирать все перечисленные выше системы дольше и сложнее. А если предстоит замена турбокомпрессора, то готовьтесь выложить от 60 000 руб. Восстановление узла может потребовать половину этой суммы.

5. Обязательно применять хорошее топливо и смазки

Все современные моторы довольно требовательны к качеству топлива и моторного масла. Но если атмосферник на некачественных жидкостях «умрет» не сразу, то жизнь форсированного наддувного мотора будет измеряться минутами. Кроме того, расход даже самого дорогого масла у наддувного мотора будет выше, чем у большинства атмосферников.

Отдельного разговора требует расход топлива. Любой маркетолог, желающий продать вам машину с турбомотором, будет уверять, что она экономичнее, чем автомобиль с атмосферным двигателем. В теории так и есть. Но ведь турбомашина — это «великий провокатор».

Некоторые автомобилисты сознательно выбирают турбодвигатель, чтобы ездить напористо и агрессивно. В этом случае расход будет не меньше, а даже больше, примерно на 30%, чем у спокойного водителя.

Для неторопливого водителя мощность турбомашины может показаться избыточной, а повышенные затраты на содержание, (частые ТО, дорогие бензин и масло) — неоправданными.

6. Необходимость дополнительного охлаждения

Недаром многие сигнализации имеют опцию «турботаймер». Это устройство позволяет не глушить разогретый турбомотор сразу после остановки машины, а дает двигателю поработать на холостом ходу для охлаждения — прежде всего турбины. Похожий алгоритм у некоторых мощных автомобилей штатно заложен в блок управления двигателем. Без этого в остановившейся, но раскаленной докрасна турбине масло закоксуется, нарушив герметичность уплотнений. В итоге значительно вырастет расход масла на угар.

7. Проблемы с ликвидностью

Обо всех вышеперечисленных неприятностях осведомлены, в той или иной степени, многие автолюбители. Именно поэтому большинство предпочтет на вторичном рынке машину с атмосферным двигателем. А заезженные «турбозажигалки» приобретать будут, в основном, молодые поклонники всех серий «Форсажа».

Впрочем, есть у турбомоторов и неоспоримые плюсы.

1. Отличная характеристика крутящего момента

Разгон автомобиля — хоть с механической коробкой передач, хоть с автоматом — очень зависит от того, насколько быстро мотор из режима холостого хода сможет достигнуть оборотов максимальной мощности. А мощность, как известно, пропорциональна произведению оборотов коленвала на крутящий момент. Именно поэтому нужно, чтобы мотор на как можно более низких оборотах выдавал большой крутящий момент.

Наддувный мотор проектируют так, что турбокомпрессор обеспечивает довольно высокое давление наддува очень «рано», при небольших оборотах коленвала. В результате мы получаем большой крутящий момент на небольших оборотах.

Далее момент увеличивать нельзя во избежание чрезмерных нагрузок на детали мотора. Начинает работать перепускной клапан, направляя часть выхлопных газов в обход турбины. Так производительность турбокомпрессора ограничивается, а на кривой крутящего момента появляется горизонтальная полка.

Вот за такую характеристику турбомоторов их и любят, особенно активные водители.

Мощность и крутящий момент атмосферных двигателей ВАЗ (слева) и китайского турбомотора JLE-4G18TD.Мощность и крутящий момент атмосферных двигателей ВАЗ (слева) и китайского турбомотора JLE-4G18TD.

2. Низкий расход топлива

У атмосферного двигателя значительная часть энергии сгоревших газов теряется вместе с горячими выхлопными газами. Наддувный двигатель использует температуру и давление выпускных газов, срабатывая их в турбине. Меньше энергии пропадает зря, значит, больше используется для движения автомобиля. Но, повторюсь, при условии спокойной манеры вождения.

***

Турбодвигатели совершенствуются и захватывают все новые модельные ряды автомобилей самых разных производителей на всех континентах. Вначале они оккупировали дороги старушки Европы. Япония давно и массово загружает ими внутренний рынок. США и Корея немного более сдержанны в распространении турбированных двигателей. Зато Китай в последнее время массово пересаживается на турбонаддув. Так что за наддувными двигателями будущее. Если, конечно, их не вытеснят электрокары.

  • Самые надежные двигатели (из тех, что еще продаются) мы собрали тут.

Источник: https://www.zr.ru/content/articles/919836-7-glavnykh-nedostatkov-i-2-plyus/

Краткая история изобретения турбин :

Время паровых машин было недолгим. Но еще в древней Греции было известно, как использовать перегретую жидкость в военных действиях. Несколько столетий назад наши предки потратили немало сил и времени для покорения пара, эта тема интересна и сейчас.

Героновский эолипил

История изобретения турбин берет свое начало в античных временах, но использовать пар на благо человечества люди смогли лишь к концу XVII века. Еще в самом начале нашей эры греческий ученый Герон Александрийский показал наглядно, что пар может быть полезным. Его изобретение, называемое по имени изобретателя «Героновский эолипил», представлял собой шар, который вращался силой струи пара. Так появился первый прототип паровой турбины.

Шар Соломона

Далее история изобретения турбин развивалась не так стремительно. К сожалению, большинство изобретений древних греков осталось позабытым и не нашло дальнейшего применения.

Лишь в начале XVII столетия описывается нечто похожее на паровую машину, хотя и очень примитивную.

Французский ученый-изобретатель Соломон де Ко в своих трудах описывает пустотелый металлический шар с двумя трубками, одна из которых служит для подведения, а другая — для отведения воды. И если нагреть шар, то вода по трубке начнет движение вверх.

Турбина Бранки

В начале 1629 года изобретателем и механиком Джованни Бранки была собрана первая паровая турбина. Принцип действия базируется на преобразовании потенциальной энергии пара в кинетическую и совершении ею полезной работы.

Сущность его изобретения заключалась в том, что струя пара своим давлением приводила в движение колесо с лопастями, подобно колесу водяной мельницы. Но такого рода турбины были очень ограничены в мощностях, поскольку невозможно было создать высокое давление струи.

Таким образом, история изобретения паровой турбины приобретает новый виток после длительного перерыва.

Паровой бум

В 1825 году инженер-изобретатель Ричард Трейвисик предпринял попытку установить два сопла на колесе паровоза и пропустить через них пар высокого давления. На тех же принципах базировалась и работа лесопилки, сооруженной американским механиком У.Эйвери. Многие авторы хотели, чтобы история изобретения турбины запечатлела и их имена. Только в Англии за 20 лет было выдано патентов более чем на 100 изобретений, связанных с паровыми турбинами или принципами их работы.

Турбина в промышленности

На протяжении 5 лет, начиная с 1884 года, независимо друг от друга швед Карл Густав де Лаваль и ирландец Чарлз Парсонс работали над созданием промышленно пригодной паровой турбины.

Лаваль изобрел расширяющееся сопло, которое позволило значительно увеличить скорость выходящего пара, и вследствие этого скорость вращения ротора турбины тоже возросла. Но благодаря изобретению Лаваля возможно было получить только небольшую мощность на выходе, порядка 500 кВт.

Его паровые турбины нашли широкое применение на начальном этапе, но вскоре были заменены более мощными агрегатами других типов.

Реактивная турбина

История изобретения паровых турбин включает в себя также изобретение многоступенчатой реактивной турбины Парсонса. Отличием этого изобретения была меньшая скорость вращения и максимальное использование энергии пара. Такие значительные изменения достигались за счет того, что пар расширялся постепенно, проходя через 15 ступеней в системе турбины.

Таким образом, труды ученого нашли практическое применение в промышленности. На этом заканчивается история изобретения турбин, кратко описывая основных деятелей прошлого, занятых в решении этого важного вопроса.

С тех пор турбина Парсонса претерпела огромное количество модификаций и усовершенствований, но тем не менее основные принципы остались неизменными.

Изобретение турбин в России

История изобретения паровых турбин писалась и в России. Известный в профессиональных кругах алтайский мастер Залесов трудился на Сузунском заводе. С 1803 по 1813 год из-под его рук вышло большое количество моделей турбин. Ему, как практику с большим опытом, были видны недостатки в конструкциях паровых турбин, что позволяло вносить изменения на начальных этапах конструирования. Его коллегой по цеху был изобретатель Кузьминский.

Он трудился в области судостроительной и воздухоплавательной техники и пришел к выводу, что нецелесообразно использовать паровой двигатель поршневого типа в судостроительстве. Кузьминский изобрел и испытал паровую реверсивную турбину судовую своей конструкции. Она имела маленький вес в 15 кг на одну лошадиную силу мощности.

Российская история изобретения турбин, кратко описанная Кузьминским, характеризуется как время, когда отечественные открытия предавались забвению. Безусловно, изобретение паровой турбины дало начало новой эпохе в развитии промышленности и всего общества, послужило толчком к ряду открытий и достижений в других областях науки. Изобретения тех далеких времен находят применение и по сей день, хотя и в значительно модифицированном состоянии.

Несмотря на то что наука шагнула далеко вперед, она в большой мере основана на принципах, заложенных в далеком прошлом.

Источник: https://www.syl.ru/article/173207/new_kratkaya-istoriya-izobreteniya-turbin

Турбированный двигатель

Турбированный мотор – это силовой агрегат, в котором подача воздуха в цилиндры осуществляется посредством специального устройства – турбины. Мощность турбированного двигателя значительно больше, чем у обычного атмосферного. В этой статье мы расскажем, как работает турбированный двигатель, какие он имеет преимущества и недостатки, а также как правильно его эксплуатировать.

Принцип работы турбированного двигателя

Турбированный двигатель (будь то бензиновый или дизельный) конструктивно имеет некоторые отличия от своего атмосферного аналога. Главной особенностью любого турбированного двигателя является турбокомпрессор. Данное устройство состоит из специального вентилятора и турбины.

Компрессор подключается к выхлопной системе автомобиля и через систему специальных труб принимает часть выхлопного газа на лопасти турбины. Турбина раскручивается под давлением, создаваемым выхлопным газом и приводит в движение вентилятор компрессора.

Компрессор закачивает под давлением большое количество воздуха.

Увеличение количество и давление воздуха способствует лучшему сгоранию топлива, а значит, увеличению мощности двигателя. Таким образом, при меньшем объеме, турбированный двигатель способен иметь больше лошадиных сил, чем больший по объему атмосферный мотор.

Охлаждение турбированного двигателя отличается от охлаждения атмосферного. Прежде всего, в таких двигателях вместо радиатора применяется специальное устройство – интеркуллер. Он представляет собой тот же радиатор, однако в нем, вместо ОЖ циркулирует воздух. Иногда интеркуллер может дополняться вентилятором, для эффективности охлаждения потоком воздуха.

Преимущества и недостатки турбированного двигателя

Как и любой другой двигатель, турбированный тоже обладает своими преимуществами и недостатками.

Преимущества:

1. Самое главное преимущество турбированного двигателя – высокая мощность. Пожалуй, это главная цель, которую получили при минимальном изменении конструкции двигателя. При одинаковом объеме с атмосферным двигателем, турбированный может выдавать мощность и крутящий момент на 70 процентов больше.

2. Турбокомпрессор позволяет снизить содержание вредных веществ в выхлопном газе, что делает такой двигатель намного экологичнее. Это связано с тем, что воздух в цилиндрах сгорает намного эффективнее и полностью, в связи с этим, количество выхлопных газов уменьшается, а то и вовсе пропадает по пути в компрессор.

3. Двигатель, оборудованный турбиной, имеет низкий уровень шума, в отличие от атмосферного аналога.

4. Турбированный двигатель можно установить практически на любой автомобиль. Это связано с тем, что его конструктивные особенности мало чем отличаются от обычного ДВС. А значит, при равном объеме, они имеет такие же габариты, что позволяет монтировать его на те же крепежные элементы. Данное свойство касается как бензиновые, так и дизельные двигатели.

Недостатки:

1. Пожалуй, это самый логичный недостаток из всех – повышенный расход топлива. Дело в том, что при потреблении большего объема воздуха, необходимо и соответствующее количество топлива. Решить эту проблему невозможно, так как двигатель, раскручиваясь быстрее, будет самостоятельно закачивать требуемый уровень топлива.

ЭТО ИНТЕРЕСНО:  Какой двигатель на Ваз 2114

2. Очень большие трудности в эксплуатации. Они связаны с высокой чувствительностью качества топлива и моторного масла. Если атмосферный двигатель менее привередлив к этим показателям, то турбированный может запросто выйти из строя.

3. В дополнение ко второму недостатку можно отметить очень низкий срок службы масло и его фильтра. Дело в том, что турбированный двигатель строится на основе обычного ДВС, а значит, рассчитан на такой же пробег и количество оборотов. Так как турбированный двигатель чаще работает на повышенных оборотах, соответственно масло быстрее теряет свои свойства.

4. Большие цены. Суть данного вопроса начинается с того, что цена на турбину и ее комплектующие изделия достаточно высокая. Соответственно турбокомпрессор очень дорого ремонтировать, что не каждому по карману.

5. Есть некоторые особенности охлаждения турбины после долгой поездки. Дело в том, что она достаточно сильно перегревается и может остыть только на холостых оборотах. Поэтому, прежде чем глушить двигатель, ему дают поработать еще около двух минут.

6. Двигатель с турбокомпрессором в сборе стоит дороже своего атмосферного аналога на 20-30 процентов.

Как правильно эксплуатировать турбированный двигатель?

Если соблюдать все правила эксплуатации, то двигатель, оснащенный турбокомпрессором, может прослужить около 500 тысяч километров. Известны случаи, когда двигатель «переживал» собственный автомобиль. Кузов сгнивал, а мотор устанавливали на другой автомобиль и продолжали эксплуатировать.

  • Заливайте в бензобак только самое качественное топливо. Не заправляйтесь на сомнительных заправках. То же самое относится и  к моторному маслу. Некачественное масло очень быстро приведет к дорогостоящему ремонту турбированного двигателя. Помимо этого, необходимо чаще проверять уровень масла.
  • Работа на холостых оборотах, которые превышают нормируемые значения, дольше 30 минут недопустима. Если у вас холостые обороты выставлены на слишком больших или малых значениях, обязательно отрегулируйте карбюратор или перепрограммируйте систему впрыска топлива.
  • После каждого запуска турбированного двигателя, его необходимо прогревать не менее двух минут. Только затем можно начинать движение.
  •  Если после длительной поездки вы решили остановиться, то не глушите двигатель сразу. Необходимо выждать время, пока на холостых оборотах остынет турбокомпрессор (порядка 2-3 минут) и только после этого выключайте зажигание.
  •  Всегда своевременно проводите мероприятия, касающиеся технического обслуживания двигателя. Здесь имеется ввиду замена масла, расходных материалов.

Вот так устроен турбированный двигатель. Если вы не боитесь всех сложностей эксплуатации и повышенного расхода топлива, то можете без проблем установить на свой автомобиль подобный агрегат. Однако стоит отметить, что если вы планируете установку такого двигателя на свой автомобиль, то необходимо соответствующее переоформление двигателя в органах ГИБДД. 

Источник: https://VipWash.ru/dvigatel/turbirovannyy-dvigatel

Описание и принцип работы турбонаддува двигателя

Среди всех возможных вариантов наддува двигателя внутреннего сгорания наибольшее распространение получил турбонаддув, в котором воздух подается в цилиндры при помощи специального устройства — турбокомпрессора (турбины).

Вращение турбины осуществляют отработавшие газы, что позволяет существенно увеличить мощность двигателя без увеличения частоты оборотов последнего. Помимо этого, турбонаддув позволяет получать большие значения крутящего момента при небольшом расходе топлива.

В сравнении с классическими конструкциями при аналогичной мощности турбированный двигатель имеет более компактные габаритные размеры.

Устройство системы турбонаддува

На практике турбонаддув применяется как на моторах, использующих дизельное топливо, так и на бензиновых. Однако наиболее часто эта система встречается именно на дизельном двигателе, поскольку для них характерна высокая степень сжатия, меньшая температура выхлопа и низкие обороты коленчатого вала. Более высокая степень сжатия обеспечивает повышение мощности турбированного двигателя и увеличивает его КПД.

В бензиновых моторах температура отработавших газов выше, что может спровоцировать эффект детонации, приводящий к быстрому износу поршневой группы. Для предотвращения этого явления необходимо использовать бензин с более высоким октановым числом, что не всегда является экономически выгодным.

Принцип работы турбины

Система турбонаддува состоит из следующих элементов:

  • Воздухозаборник;
  • Воздушный фильтр;
  • Перепускной клапан — регулирует подачу отработавших газов;
  • Дроссельная заслонка — регулирует подачу воздуха на впуске;
  • Турбокомпрессор — повышает давление воздуха во впускной системе. Состоит из турбинного и компрессорного колес;
  • Интеркулер — охлаждает воздух, способствуя лучшему наполнению цилиндров и снижению вероятности детонации;
  • Датчики давления — фиксирует давление наддува в системе;
  • Впускной коллектор — распределяет воздух по цилиндрам;
  • Соединительные патрубки — необходимы для крепления элементов системы между собой.

Принцип работы турбонаддува

Схема работы турбонаддува двигателя

Принцип работы системы турбонаддува заключается в следующем:

  • Отработавшие газы двигателя, проходя через турбокомпрессор, раскручивают турбинное колесо.
  • Вращение турбинного колеса передается компрессорному, поскольку они закреплены на одном валу.
  • Компрессор сжимает воздух, поступающий  из воздухозаборника, и направляет его в интеркулер.
  • В интеркулере воздух охлаждается и поступает на впуск в цилиндры двигателя.

В турбокомпрессоре предусматривается возможность регулировки давления выхлопных газов на лопасти турбины с целью не допустить превышение давления наддува в системе. Это осуществляется с помощью перепускного клапана, который приводится в движение пневмо- или электроприводом. В свою очередь, управление приводом осуществляется электронным блоком управления, который считывает информацию с датчика давления.

Особенности эксплуатации турбированных двигателей

На режимах разгона автомобиля в силу инерционности системы возникает явление, получившее название «турбояма». Сущность явления заключается в следующем:

  • Автомобиль движется с небольшой постоянной скоростью.
  • Турбина вращается в соответствующем режиме.
  • При резком нажатии на педаль ускорения в цилиндры двигателя подается больше топлива.
  • После его сгорания образуются отработавшие газы, которые с большей силой воздействуют на турбину и увеличивают мощность двигателя. Однако происходит это с некоторой временной задержкой.

Таким образом, между моментом нажатия на педаль и фактическим ускорением автомобиля присутствует некоторая временная задержка — «турбояма». Также данное явление проявляется в виде недостатка крутящего момента на малых оборотах двигателя.

Виды систем турбонаддува

Производители разработали различные способы избавления от «турбоямы»:

  • Турбина с изменяемой геометрией. Конструкция предусматривает изменение сечения входного канала. За счет этого выполняется регулирование потока отработавших газов.
  • Два турбокомпрессора, установленных последовательно (Twin Turbo). На каждый режим работы (обороты двигателя) предусматривается свой компрессор.
  • Два турбокомпрессора, установленных параллельно (Bi Turbo). Схема разбиения на две турбины снижает инерцию системы, и турбояма становится не так ощутима.
  • Комбинированный наддув. Устройство предусматривает и механический, и турбонаддув. Первый включается при низких оборотах, второй при высоких.

Что такое турботаймер и для чего он необходим

Турботаймер

Другой стороной инерционности системы с турбокомпрессором является необходимость снижать обороты постепенно. Нельзя резко выключать зажигание после того, как двигатель работал на высоких оборотах. Это обусловлено тем, что подшипники будут продолжать вращение, а поскольку масло не будет подаваться в систему — возникнет повышенное трение. Оно, в свою очередь, спровоцирует быстрый износ вала турбины.

Для решения этой проблемы применяется турботаймер. Это устройство устанавливается на приборной панели и подключается в цепь зажигания. После выключения зажигания ключом система запускает таймер, который глушит двигатель спустя некоторое время, давая возможность турбине снизить обороты до приемлемых значений.

Достоинства и недостатки системы турбонаддува

Подводя итоги, можно выделить плюсы и минусы использования на моторе турбонаддува. В числе достоинств:

К минусам можно отнести:

  • низкий крутящий момент на малых оборотах двигателя;
  • более высокая стоимость;
  • более сложное обслуживание и эксплуатация.

(5 5,00 из 5)

Вам также может понравиться

Источник: https://TechAutoPort.ru/dvigatel/vpusknaya-sistema/turbonadduv-dvigatelya.html

Турбонаддув — история изобретения и принцип работы

Под турбонаддувом принято понимать метод, основанный на агрегатном наддуве, который подразумевает использование отработанных газов в качестве источника энергии. При этом главным компонентом системы можно считать турбокомпрессор, а в некоторых случаях турбонагнетатель, оснащенный механическим приводом.

Экскурс в историю

Турбокомпрессоры стали известны в то время, когда создавались первые образцы тепловых двигателей, где энергия топлива преобразовывалась в механическую работу (ДВС). В период с 1885 по 1896 г. Рудольф Дизель вместе с Готлибом Даймлером проводил исследования, направленные на увеличение мощности, а также снижения затрат топлива, посредством сжатия воздуха, который нагнетался непосредственно в камеру сгорания.

При этом в 1905 г. произошло важное событие, обусловленное деятельностью инженера Альфреда Бюхи, который смог достичь глобального увеличения мощности (120%) с помощью процесса нагнетания выхлопных газов. Спустя шесть лет Бюхи получил патент, закрепивший метод турбонаддува.

Изначально турбокомпрессоры применяли в двигателях, отличавшихся серьезными размерами, например, устанавливаемые на кораблях. Что касается авиации, то турбокомпрессоры нашли свое применение еще на заре военного авиастроения, когда ими оснащались двигатели Рено, предназначенные для установки на истребителях.

В дальнейшем развитие авиационных турбонагнетателей шло форсированными темпами. Так, в 1938 г. американцы оснастили турбонагнетателями двигатели истребителей и бомбардировщиков, а в 1941 г.

был предложен проект истребителя P-47, имевший в своем составе турбонагнетатель, который значительно улучшал летные характеристики.

В свою очередь, автомобильная промышленность впервые стала эксплуатировать турбокомпрессоры на грузовых автомобилях. Значительно позже получили массовое распространение турбины, предназначенные для легковых автомобилей. На американский рынок уже в начале шестидесятых годов поступили две модели с турбодвигателями, которые достаточно быстро исчезли, так как наряду с техническими преимуществами уровень надежности был минимален.

Спустя десятилетие, турбодвигатели стали неотъемлемой частью автомобилей Formula 1, что сказалось на росте популярности турбокомпрессоров. Именно с этого времени приставка «турбо» вошла в обиход и стала модной.

В основной своей массе производители автомобилей этого периода старались предложить на рынок хотя бы одну модель, оснащенную бензиновым турбодвигателем. Подобное положение вещей продолжалось относительно недолго, так как мода на турбодвигатели пошла на спад.

В большей мере это связано с тем, что турбокомпрессор наряду с увеличением мощности также значительно увеличивал и расход топлива.

Реинкарнацией турбокомпрессора можно считать 1977 г., когда в массовое производство поступил Saab 99 Turbo. Через год на рынке появился Mercedes-Benz 300 SD, который стал первым автомобилем с турбодвигателем на дизельной основе. Затем последовала модель VW Turbodiesel, где турбокомпрессор увеличивал эффективность дизельного двигателя до планки бензинового агрегата, а потребление топлива значительно снижалось.

В принципе, дизельные двигатели отличаются высокой степенью сжатия, что соотносится с адиабатным расширением на рабочем ходе и предполагает более низкую температуру выхлопных газов. Это обстоятельство позволяет не выдвигать к жаропрочности турбины жесткие требования, что дает возможность удешевить конструкцию силового агрегата в целом. Данное условие объясняет тот факт, что турбины в основном устанавливают на дизельных двигателях, а не бензиновых.

Элементы системы

  • Турбокомпрессор и интеркулер.
  • Регулировочный клапан, предназначенный для контроля давления.
  • Перепускной клапан, служащий для перемещения наддувочного воздуха во впускные патрубки и далее до турбины в том случае, если дроссельная заслонка закрыта.
  • Стравливающий клапан, применяемый при отсутствии датчика, контролирующего массовый расход топлива. Его предназначение – это сброс наддувочного воздуха в окружающую среду.
  • Выпускной коллектор, отличающийся совместимостью с турбокомпрессором.
  • Герметичные патрубки, подразделяющиеся на воздушные и масляные. Первые осуществляют подачу воздуха во впуск, а вторые – смазку и охлаждение турбокомпрессора.

Источник: https://turbo-magazin.ru/turbonadduv-istoriya-izobreteniya-i-printsip-rabotyi.html

История создания турбин в автомобилях

Двигателестроители, начиная с Отто и Дизеля, всегда мечтали о максимально возможном наполнении цилиндров воздухом. Но, в таком случае, двигатель должен был бы сам себя «надувать» сжатым воздухом, чтобы не было лишних затрат энергии. Ведь чем больше в цилиндрах воздуха, тем больше энергии, что, в итоге, приводит к значительному приросту мощности и крутящего момента.

Естественно, изобретатели ухватились за идею использовать энергию выхлопных газов для нагнетания воздуха. Хотя все это звучит просто, но прошло много лет до тех пор, как эту идею смогли реализовать — турбокомпрессоры появились спустя сто лет после изобретения двигателя внутреннего сгорания.

Первым, кто описал и запатентовал принцип работы турбокомпрессора, был Альфред Бюхли в 1905 году. Инженеры никогда не сталкивались с нехваткой воздуха, ведь даже совсем небольшой компрессор может передать большое количество воздуха. Проблема была в том, как контролировать давление наддува между переключениями передач. Первоначально турбокомпрессоры устанавливались на самолеты и корабли — на этих транспортных средствах обороты двигателя изменяются плавно.

Затем стали устанавливать турбокомпрессоры на дизельные двигатели. В пятидесятые годы нашего столетия устанавливать турбины начали и на гоночные автомобили, где скорость была примерно постоянна. В те же годы инженеры General Motors оснастили турбодвигателями и серийные модели, но тут же обнаружились «подводные камни»: при разгоне с малых оборотов компрессор реагировал очень медленно. Это явление и назвали «турболагом» или «турбоямой».

На больших оборотах турбонагнетатели давали слишком большое давление.

К концу 60-х годов инженер из Швейцарии Михаэль Мэй выдвинул идею о том, что турбокомпрессоры нужно делать маленьких размеров, тогда они будут подавать меньшее количество воздуха с одной стороны, а, с другой стороны, маленький агрегат имел меньший вес, и, поэтому, обладал меньшей инертностью и быстрее реагировал на изменение скорости.

В это же время фирма Porsche тоже заинтересовалась идеей турбокомпрессора. Они совместно с фирмой ККК в начале 70-х годов и положили начало эры турбокомпрессоров в автомобилестроении. В турбодвигателях при нажатии на педаль акселератора давление должно было резко возрастать, а при отпускании педали — резко падать.

Тогда поступили следующим образом: когда давление становилось большим, выхлопные газы пропускались мимо турбины.

Таким обзором, когда дроссельная заслонка закрывается, стравливаются выхлопные газы, при этом крыльчатка турбокомпрессора еще вращается, но не в полную силу, и когда же давление наддува снова будет необходимо, перепускной клапан закрывается, и турбина быстрее раскручивается.

Было еще много других проблем, например, температура в турбокомпрессорах бензинового двигателя достигала 1000 градусов, но все эти проблемы были решены, и, в наше время, турбокомпрессоры честно служат на пользу человечества.

Давайте по пунктам

Представим себе такт впуска двигателя внутреннего сгорания: мотор работает как насос, к тому же весьма неэффективный – на пути воздуха (горючей смеси) находится воздушный фильтр, извилины впускных каналов в бензиновых моторах, еще и дроссельная заслонка.

Все это снижает наполнение цилиндра. Что же сделать, чтобы его повысить? Поднять давление перед впускным клапаном, тогда горючей смеси (для дизелей – воздуха) в цилиндре будет больше.

Энергия сгорания заряда с большим количеством топлива, само собой, повысится, вырастет и общая мощность двигателя.

Нагнетатель Roots и компрессор Lysholm

Нагнетатель Roots и компрессор Lysholm имеют линейные характеристики — обороты компрессора повышаются синхронно с оборотами коленчатого вала, пропорционально растет подача воздуха, и кривая крутящего момента двигателя, практически не меняя свою форму, размеренно перемещается вверх. У центробежного и турбокомпрессоров характеристики нелинейные — их производительность увеличивается с ростом числа оборотов. Поэтому установка того или иного агрегата по-разному меняет характеристики (кривые мощности и крутящего момента) двигателя.

Оба типа компрессоров весьма эффективны с самых низких оборотов, но Lysholm обеспечивает более плоскую характеристику на высших, у Roots ее спад начинается несколько раньше.

К преимуществам Lysholm можно отнести и более высокий КПД, и лучшее соотношение габариты/масса, к тому же он меньше нагревается при работе. Рабочая частота вращения обычно 12-14 тыс. оборотов, но может доходить до 25 тыс. об./мин.

Стоит заметить что компания Mercedes- Benz одна из первых начала использовать компрессоры в своих автомобилях, причем предпочтение она отдала именно роторным конструкциям.

Роторы Lysholm с их сложной формой требуют высочайшей точности изготовления – компрессоры этого типа появились на рынке заметно позже других. Главные их производители – шведские компании Lysholm и Autorotor. Известны потребителю фирмы Kleemann, Whipple и пр. в основном поставляют готовые комплекты на шведской основе, разработанные для конкретных двигателей. Комплекты включают интеркулер, систему привода, входной коллектор, переходники и так далее.

Нетипичные конструкции

Одна их них — волновой нагнетатель Comprex, он принадлежит фирме Asea-Brown-Boweri. Ротор этого компрессора имеет аксиально расположенные камеры или ячейки. При вращении ротора в ячейку поступает свежий воздух, после чего она подходит к отверстию в корпусе, через которое в нее попадают горячие газы из двигателя.

При их взаимодействии с холодным воздухом образуется волна давления, фронт которой, движущийся со скоростью звука, вытесняет воздух в отверстие впускного трубопровода, к которому ячейка за это время успевает подойти. Поскольку ротор продолжает вращаться, отработавшие газы в это отверстие попасть не успевают, а выходят в следующее по ходу ротора.

При этом в ячейке образуется волна разряжения, которая всасывает следующую порцию свежего воздуха и т. д.

Источник: https://somanyhorses.ru/istoriya-sozdaniya-turbin-v-avtomobilyah/

Понравилась статья? Поделиться с друзьями:
Автолайф
Где указан год выпуска авто

Закрыть